42,218 research outputs found

    An object-based approach for verification of precipitation estimation

    Get PDF
    Verification has become an integral component in the development of precipitation algorithms used in satellite-based precipitation products and evaluation of numerical weather prediction models. A number of object-based verification methods have been developed to quantify the errors related to spatial patterns and placement of precipitation. In this study, an image processing technique known as watershed transformation, capable of detecting closely spaced, but separable precipitation areas, is adopted in the object-based approach. Several key attributes of the segmented precipitation objects are selected and interest values of those attributes are estimated based on the distance measurement of the estimated and reference images. An overall interest score is estimated from all the selected attributes and their interest values. The proposed object-based approach is implemented to validate satellite-based precipitation estimation against ground radar observations. The results indicate that the watershed segmentation technique is capable of separating the closely spaced local-scale precipitation areas. In addition, three verification metrics, including the object-based false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill of precipitation estimates in depicting the spatial and geometric characteristics of the precipitation structure against observations

    Object-based assessment of satellite precipitation products

    Get PDF
    An object-based verification approach is employed to assess the performance of the commonly used high-resolution satellite precipitation products: Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Climate Prediction center MORPHing technique (CMORPH), and Tropical Rainfall Measurement Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42RT. The evaluation of the satellite precipitation products focuses on the skill of depicting the geometric features of the localized precipitation areas. Seasonal variability of the performances of these products against the ground observations is investigated through the examples of warm and cold seasons. It is found that PERSIANN is capable of depicting the orientation of the localized precipitation areas in both seasons. CMORPH has the ability to capture the sizes of the localized precipitation areas and performs the best in the overall assessment for both seasons. 3B42RT is capable of depicting the location of the precipitation areas for both seasons. In addition, all of the products perform better on capturing the sizes and centroids of precipitation areas in the warm season than in the cold season, while they perform better on depicting the intersection area and orientation in the cold season than in the warm season. These products are more skillful on correctly detecting the localized precipitation areas against the observations in the warm season than in the cold season

    Light weight fire resistant graphite composites

    Get PDF
    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft

    Distributed Private Heavy Hitters

    Full text link
    In this paper, we give efficient algorithms and lower bounds for solving the heavy hitters problem while preserving differential privacy in the fully distributed local model. In this model, there are n parties, each of which possesses a single element from a universe of size N. The heavy hitters problem is to find the identity of the most common element shared amongst the n parties. In the local model, there is no trusted database administrator, and so the algorithm must interact with each of the nn parties separately, using a differentially private protocol. We give tight information-theoretic upper and lower bounds on the accuracy to which this problem can be solved in the local model (giving a separation between the local model and the more common centralized model of privacy), as well as computationally efficient algorithms even in the case where the data universe N may be exponentially large

    Fluctuation Effects in High Sheet Resistance Superconducting Films

    Full text link
    As the normal state sheet resistance, RnR_n, of a thin film superconductor increases, its superconducting properties degrade. For Rn≃h/4e2R_n\simeq h/4e^2 superconductivity disappears and a transition to a nonsuperconducting state occurs. We present electron tunneling and transport measurements on ultrathin, homogeneously disordered superconducting films in the vicinity of this transition. The data provide strong evidence that fluctuations in the amplitude of the superconducting order parameter dominate the tunneling density of states and the resistive transitions in this regime. We briefly discuss possible sources of these amplitude fluctuation effects. We also describe how the data suggest a novel picture of the superconductor to nonsuperconductor transition in homogeneous 2D systems.Comment: 11 pages, 5 figure

    Similarity laws of lunar and terrestrial volcanic flows

    Get PDF
    A mathematical model of a one dimensional, steady duct flow of a mixture of a gas and small solid particles (rock) was analyzed and applied to the lunar and the terrestrial volcanic flows under geometrically and dynamically similar conditions. Numerical results for the equilibrium two phase flows of lunar and terrestrial volcanoes under similar conditions are presented. The study indicates that: (1) the lunar crater is much larger than the corresponding terrestrial crater; (2) the exit velocity from the lunar volcanic flow may be higher than the lunar escape velocity but the exit velocity of terrestrial volcanic flow is much less than that of the lunar case; and (3) the thermal effects on the lunar volcanic flow are much larger than those of the terrestrial case
    • …
    corecore