3,070 research outputs found

    Modeling Flood Perils and Flood Insurance Program in Taiwan

    Get PDF
    Taiwan had approximately 3,000 buildings damaged by floods with an economic loss of NT$12.8 billion annually, a figure 4.5 times more than economic losses due to fire damages. Many insurers become extremely cautious when underwriting their flood policies for people living in areas that are frequently struck by floods. The rising damages also trigger the demand for a mandatory national flood insurance program. This paper describes the development of an integrated flood risk assessment model for Taiwan which contains of a hazard, vulnerability and financial analysis module. We take the perspective that the mandatory program will be provided to fire policyholders as part of building and content insurance to mitigate the financial losses. The issue of a long-term balance between fund accumulations and its claim payouts will be addressed along with policy recommendations based on the modeling results.Risk Assessment, Typhoon, Flood Insurance, Financial Analysis, Resource /Energy Economics and Policy, Risk and Uncertainty,

    iPDA: integrated protein disorder analyzer

    Get PDF
    This article presents a web server iPDA, which aims at identifying the disordered regions of a query protein. Automatic prediction of disordered regions from protein sequences is an important problem in the study of structural biology. The proposed classifier DisPSSMP2 is different from several existing disorder predictors by its employment of position-specific scoring matrices with respect to physicochemical properties (PSSMP), where the physicochemical properties adopted here especially take the disorder propensity of amino acids into account. The web server iPDA integrates DisPSSMP2 with several other sequence predictors in order to investigate the functional role of the detected disordered region. The predicted information includes sequence conservation, secondary structure, sequence complexity and hydrophobic clusters. According to the proportion of the secondary structure elements predicted, iPDA dynamically adjusts the cutting threshold of determining protein disorder. Furthermore, a pattern mining package for detecting sequence conservation is embedded in iPDA for discovering potential binding regions of the query protein, which is really helpful to uncovering the relationship between protein function and its primary sequence. The web service is available at http://biominer.bime.ntu.edu.tw/ipda and mirrored at http://biominer.cse.yzu.edu.tw/ipda

    Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies.</p> <p>Results</p> <p>Among the discarded data, we found that 23.7 ± 3.9% of singletons and 14.1 ± 1.0% of contigs were assigned to taxa. The recovery rates for singletons were higher than those for contigs. The <it>Pearson </it>correlation coefficient revealed a high degree of similarity (0.94 ± 0.03 at the phylum rank and 0.80 ± 0.11 at the family rank) between the proposed taxonomic binning approach and those reported in original studies. In addition, an evaluation using simulated data demonstrated the reliability of the proposed approach.</p> <p>Conclusions</p> <p>Our findings suggest that taking account of conserved neighboring gene adjacency improves taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.</p

    An Envelope Disrupted by a Quadrupolar Outflow in the Pre-Planetary Nebula IRAS19475+3119

    Full text link
    IRAS 19475+3119 is a quadrupolar pre-planetary nebula (PPN), with two bipolar lobes, one in the east-west (E-W) direction and one in the southeast-northwest (SE-NW) direction. We have observed it in CO J=2-1 with the Submillimeter Array at ~ 1" resolution. The E-W bipolar lobe is known to trace a bipolar outflow and it is detected at high velocity. The SE-NW bipolar lobe appears at low velocity, and could trace a bipolar outflow moving in the plane of the sky. Two compact clumps are seen at low velocity around the common waist of the two bipolar lobes, spatially coincident with the two emission peaks in the NIR, tracing dense envelope material. They are found to trace the two limb-brightened edges of a slowly expanding torus-like circumstellar envelope produced in the late AGB phase. This torus-like envelope originally could be either a torus or a spherical shell, and it appears as it is now because of the two pairs of cavities along the two bipolar lobes. Thus, the envelope appears to be disrupted by the two bipolar outflows in the PPN phase.Comment: 23 pages, 8 figure

    Type-II Topological Dirac Semimetals: Theory and Materials Prediction (VAl3 family)

    Full text link
    The discoveries of Dirac and Weyl semimetal states in spin-orbit compounds led to the realizations of elementary particle analogs in table-top experiments. In this paper, we propose the concept of a three-dimensional type-II Dirac fermion and identify a new topological semimetal state in the large family of transition-metal icosagenides, MA3 (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node consists of four type-II Weyl nodes with chiral charge +/-1 via symmetry breaking. Furthermore, we predict the Landau level spectrum arising from the type-II Dirac fermions in VAl3 that is distinct from that of known Dirac semimetals. We also show a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions. The new type-II Dirac fermions, their novel magneto-transport response, the topological tunability and the large number of compounds make VAl3 an exciting platform to explore the wide-ranging topological phenomena associated with Lorentz-violating Dirac fermions in electrical and optical transport, spectroscopic and device-based experiments.Comment: 28 pages, 7 Figure

    New fermions on the line in topological symmorphic metals

    Full text link
    Topological metals and semimetals (TMs) have recently drawn significant interest. These materials give rise to condensed matter realizations of many important concepts in high-energy physics, leading to wide-ranging protected properties in transport and spectroscopic experiments. The most studied TMs, i.e., Weyl and Dirac semimetals, feature quasiparticles that are direct analogues of the textbook elementary particles. Moreover, the TMs known so far can be characterized based on the dimensionality of the band crossing. While Weyl and Dirac semimetals feature zero-dimensional points, the band crossing of nodal-line semimetals forms a one-dimensional closed loop. In this paper, we identify a TM which breaks the above paradigms. Firstly, the TM features triply-degenerate band crossing in a symmorphic lattice, hence realizing emergent fermionic quasiparticles not present in quantum field theory. Secondly, the band crossing is neither 0D nor 1D. Instead, it consists of two isolated triply-degenerate nodes interconnected by multi-segments of lines with two-fold degeneracy. We present materials candidates. We further show that triplydegenerate band crossings in symmorphic crystals give rise to a Landau level spectrum distinct from the known TMs, suggesting novel magneto-transport responses. Our results open the door for realizing new topological phenomena and fermions including transport anomalies and spectroscopic responses in metallic crystals with nontrivial topology beyond the Weyl/Dirac paradigm.Comment: 24 pages, 4 figures, and 1 tabl

    Electroencephalography and transcranial Doppler ultrasonography in neonatal citrullinemia

    Get PDF
    The authors present a case of citrullinemia with a genotype of argininosuccinate synthetase (ASS1), c.380 G>A (p.R127Q)/c.380 G>A (p.R127Q), in two alleles. A 3-day-old female infant presented with status epilepticus and coma. Laboratory data showed hyperammonemia and marked lactic acidosis in the blood and cerebrospinal fluid; electroencephalography showed severely suppressed cerebral activity and focal paroxysmal volleys of slow and sharp waves (< 1Hz) over the left hemisphere. Real-time transcranial Doppler ultrasonography showed a brain edema and high peaked systolic and low diastolic flows in basal, anterior, and middle cerebral arteries; however, immediately after a blood exchange transfusion, systolic flows were lower and diastolic flows were higher. The resistance indices were significantly different (means: 0.58 vs. 0.37; p=0.01). The patient was placed on diet therapy. After six blood exchange transfusions and peritoneal dialysis, her neurologic examination results and serum ammonia and lactate values were normal. The authors found that electroencephalography and transcranial Doppler ultrasonography were useful for the diagnosis and follow-up treatment of neonatal citrullinemia
    corecore