3,334 research outputs found

    Location-dependent threat and associated neural abnormalities in clinical anxiety

    Get PDF
    Anxiety disorders are characterized by maladaptive defensive responses to distal or uncertain threats. Elucidating neural mechanisms of anxiety is essential to understand the development and maintenance of anxiety disorders. In fMRI, patients with pathological anxiety (ANX, n = 23) and healthy controls (HC, n = 28) completed a contextual threat learning paradigm in which they picked flowers in a virtual environment comprising a danger zone in which flowers were paired with shock and a safe zone (no shock). ANX compared with HC showed 1) decreased ventromedial prefrontal cortex and anterior hippocampus activation during the task, particularly in the safe zone, 2) increased insula and dorsomedial prefrontal cortex activation during the task, particularly in the danger zone, and 3) increased amygdala and midbrain/periaqueductal gray activation in the danger zone prior to potential shock delivery. Findings suggest that ANX engage brain areas differently to modulate context-appropriate emotional responses when learning to discriminate cues within an environment

    Origin of Ferromagnetism in nitrogen embedded ZnO:N thin films

    Full text link
    Nitrogen embedded ZnO:N films prepared by pulsed laser deposition exhibit significant ferromagnetism. The nitrogen ions contained in ZnO confirmed by Secondary Ion Microscopic Spectrum and Raman experiments and the embedded nitrogen ions can be regarded as defects. According to the experiment results, a mechanism is proposed based on one of the electrons in the completely filled d-orbits of Zn that compensates the dangling bonds of nitrogen ions and leads to a net spin of one half in the Zn orbits. These one half spins strongly correlate with localized electrons that are captured by defects to form ferromagnetism. Eventually, the magnetism of nitrogen embedded ZnO:N films could be described by a bound magnetic polaron model.Comment: 7 pages, 6 figure

    Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc

    Get PDF
    Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression

    Improved Constraints on D0-D0bar Mixing in D0 -> K+ pi- Decays from the Belle Detector

    Full text link
    We report the results of a search for D0-D0bar mixing in D0 -> K+ pi- decays based on 400 fb^{-1} of data accumulated by the Belle detector at KEKB. Both assuming CP conservation and allowing for CP violation, we fit the decay-time distribution for the mixing parameters x' and y', as well as for the parameter R_D, the ratio of doubly-Cabibbo-suppressed decays to Cabibbo-favored decays. The 95% confidence level region in the (x'^2,y') plane is obtained using a frequentist method. Assuming CP conservation, we find x'^2<0.72 x 10^{-3} and -9.9 x 10^{-3}<y'<6.8 x 10^{-3} at the 95% confidence level; these are the most stringent constraints on the mixing parameters to date. The no-mixing point (0,0) has a confidence level of 3.9%. Assuming no mixing, we measure R_D=(0.377+-0.008+-0.005)%.Comment: 6 pages, 3 figures, 1 table; replaced with the version of Phys. Rev. Let

    Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decay KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma via the topology KLπ0πD0γK_{L}\to\pi^{0}\pi^{0}_D\gamma (where πD0γe+e\pi^0_D\to\gamma e^+e^-). Due to Bose statistics of the π0\pi^0 pair and the real nature of the photon, the KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma decay is restricted to proceed at lowest order by the CP conserving direct emission (DE) of an E2 electric quadrupole photon. The rate of this decay is interesting theoretically since chiral perturbation theory predicts that this process vanishes at level O(p4)O(p^4). Therefore, this mode probes chiral perturbation theory at O(p6)O(p^6). In this paper we report a determination of an upper limit of 2.43×1072.43\times 10^{-7} (90% CL) for KLπ0π0γK_{L}\to\pi^{0}\pi^{0}\gamma. This is approximately a factor of 20 lower than previous results.Comment: six pages and six figures in the submission. Reformatted for Physics Review

    Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-

    Full text link
    The KTeV E799 experiment has conducted a search for the rare decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new neutral boson that was reported by the HyperCP experiment with a mass of (214.3 pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) < 9.2 x 10^{-11} at the 90% confidence level. This result rules out the pseudoscalar X0 as an explanation of the HyperCP result under the scenario that the \bar{d}sX0 coupling is completely real

    Search for the decay KL03γK_L^0 \rightarrow 3\gamma

    Full text link
    We performed a search for the decay KL03γK_L^0 \rightarrow 3\gamma with the E391a detector at KEK. In the data accumulated in 2005, no event was observed in the signal region. Based on the assumption of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-violation, we obtained the single event sensitivity to be (3.23±0.14)×108(3.23\pm0.14)\times10^{-8}, and set an upper limit on the branching ratio to be 7.4×1087.4\times10^{-8} at the 90% confidence level. This is a factor of 3.2 improvement compared to the previous results. The results of KL03γK_L^0 \rightarrow 3\gamma proceeding via parity-conservation were also presented in this paper

    Observation of a near-threshold omega-J/psi mass enhancement in exclusive B-->K omega J/psi decays

    Full text link
    We report the observation of a near-threshold enhancement in the omega-J/psi invariant mass distribution for exclusive B-->K omega J/psi decays. The results are obtained from a 253 fb-1 data sample that contains 275 million BB-bar meson pairs that were collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+e- collider. The statistical significance of the omega-J/psi mass enhancement is estimated to be greater than 8 sigma.Comment: 12 pages, 4 figures, submitted to Physical Review Letter
    corecore