809 research outputs found

    Effects of nerve-sparing procedures on surgical margins after robot-assisted radical prostatectomy

    Get PDF
    BACKGROUND: Nerve-sparing (NS) techniques could potentially increase positive surgical margins (PSM) after robot-assisted radical prostatectomy (RARP). Nevertheless, the available studies have revealed ambiguous results among distinct groups. This study purposed to clarify the details of NS techniques to accurately estimate their influence on margin status. METHODS: We studied RARPs performed by one surgeon from 2010 to 2018. Surgical margins were evaluated by the laterality and levels of NS techniques in site-specific prostate lobes. The multivariable analysis evaluated the effects of nerve-sparing procedures, combined with other covariate factors, on margin status. RESULTS: Overall, four hundred nineteen RARPs involving 838 prostate lobes were analyzed. Notably, 181 patients (43.4%) had pT2-stage, and 236 (56.6%) had pT3-stage cancer. The PSM rates for patients who underwent unilateral, bilateral, and non NS procedures were 30.3%, 28.8%, and 50%, respectively (p = 0.233) or in stratification by pT2 (p = 0.584) and pT3 (p = 0.116) stage. The posterolateral PSM rates among site-specific prostate lobes were 10.9%, 22.4%, and 18.9% for complete, partial, and non NS techniques, respectively (p = 0.001). The partial NS group revealed a significant increase in PSM rate compared with the complete NS (OR 2.187, 95% CI 1.19-4.03) and non NS (OR 2.237, 95% CI 1.01-4.93) groups in site-specific prostate lobes. CONCLUSION: Partial NS procedures have a potential risk of increasing the PSM rate than complete and non NS procedures do. Therefore, correct case selection is required before performing partial NS techniques

    Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network

    Get PDF
    In the paper we present a metabolic reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network of the parasite accounts for 1001 reactions and 616 metabolites. Enzyme–gene associations were established for 366 genes and 75% of all enzymatic reactions.The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. The model also can be used to efficiently integrate mRNA-expression data to improve the accuracy of metabolic predictions.Using FBA of the reconstructed metabolic network, we identified 40 enzymatic drug targets (i.e. in silico essential genes) with no or very low sequence identity to human proteins.We experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Chemoattractant Signaling between Tumor Cells and Macrophages Regulates Cancer Cell Migration, Metastasis and Neovascularization

    Get PDF
    Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1α and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis

    Synthesis, Electrical Measurement, and Field Emission Properties of α-Fe2O3Nanowires

    Get PDF
    α-Fe2O3nanowires (NWs) were formed by the thermal oxidation of an iron film in air at 350 °C for 10 h. The rhombohedral structure of the α-Fe2O3NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (DNWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800 nm and a diameter of 15 nm was measured to be 4.42 × 103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two-parallel-plate system. A low turn–on field of 3.3 V/μm and a large current density of 10−3 A/cm2(under an applied field of about 7 V/μm) can be obtained using optimal factors ofDNWsin the cathode

    Type Ia Supernovae as Stellar Endpoints and Cosmological Tools

    Full text link
    Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version. Shortened, update

    Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    Get PDF
    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases

    STEM nanoanalysis of Au/Pt/Ti-Si3N4 interfacial defects and reactions during local stress of SiGe HBTs

    Get PDF
    A new insight on the behavior of metal contact-insulating interfaces in SiGe heterojunction bipolar transistor is given by high-performance aberration-corrected scanning transmission electron microscopy (STEM) analysis tools equipped with sub-nanometric probe size. It is demonstrated that the presence of initial defects introduced during technological processes play a major role in the acceleration of degradation mechanisms of the structure during stress. A combination of energy-filtered transmission electron microscopy analysis with high angle annular dark field STEM and energy dispersive spectroscopy provides strong evidence that migration of Au-Pt from the metal contacts to Ti/Si3N4 interface is one of the precursors to species interdiffusion and reactions. High current densities and related local heating effects induce the evolution of the pure Ti initial layer into mixture layer composed of Ti, O, and N. Local contamination of Ti layers by fluorine atoms is also pointed out, as well as rupture of TiN thin barrier layer
    corecore