1,995 research outputs found

    Effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates

    Get PDF
    The effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates with ply orientation of (0(2),90(2))2S and (90(2),0(2))2S are examined. The relative importance of shear and tensile stresses is examined by varying the span-to-depth ratios of flexural test specimens from 8 to 45. Acoustic emission signals are measured during the flexural tests in order to monitor the initiation and growth of damage. Optical microscopy is used to examine specimens for resin cracking, delamination, and fiber breaks after testing. Transverse matrix cracks and delaminations occur in all specimens, regardless of ply orientation, span-to-depth ratio, or previous exposure of specimens to thermal and mechanical fatigue. A small amount of fiber tensile fracture occurs in the outer 0 deg ply of specimens with high span-to-depth ratios. Because of the complex failure modes, the flexural test results represent the 'apparent' strengths rather than the true flexural or shear strengths for these cross-ply laminates. Thermal cycling of specimens prior to flexural testing does not reduce the apparent flexural strength or change the mode of failure. However, fewer acoustic events are recorded at all strains during flexural testing of specimens exposed to prior thermal cycling. High temperature thermal cycling (32 to 260 C, 100 cycles) causes a greater reduction in acoustic events than low temperature thermal cycling (-85 to +85 C, 500 cycles). Mechanical cycling (0 to 50 percent of the flexural strength, 100 cycles) has a similar effect, except that acoustic events are reduced only at strains less than the maximum strain applied during flexural fatigue

    Open Vocabulary Multi-Label Classification with Dual-Modal Decoder on Aligned Visual-Textual Features

    Full text link
    In computer vision, multi-label recognition are important tasks with many real-world applications, but classifying previously unseen labels remains a significant challenge. In this paper, we propose a novel algorithm, Aligned Dual moDality ClaSsifier (ADDS), which includes a Dual-Modal decoder (DM-decoder) with alignment between visual and textual features, for open-vocabulary multi-label classification tasks. Then we design a simple and yet effective method called Pyramid-Forwarding to enhance the performance for inputs with high resolutions. Moreover, the Selective Language Supervision is applied to further enhance the model performance. Extensive experiments conducted on several standard benchmarks, NUS-WIDE, ImageNet-1k, ImageNet-21k, and MS-COCO, demonstrate that our approach significantly outperforms previous methods and provides state-of-the-art performance for open-vocabulary multi-label classification, conventional multi-label classification and an extreme case called single-to-multi label classification where models trained on single-label datasets (ImageNet-1k, ImageNet-21k) are tested on multi-label ones (MS-COCO and NUS-WIDE).Comment: preprin

    Implementation and application of vector form intrinsic finite element in pushover analysis for reinforced concrete buildings

    Get PDF
    This study aims to build numerical model of retrofitting analysis of Reinforced Concrete (RC) buildings with vector form intrinsic finite element (VIFIFE). Fiber element method is introduced in the paper to acquire the moment-curvature relation of the section and to define the behaviour of RC material. This paper also uses equivalent truss to build the analysis model of brick wall. In the end, lab and in-situ test specimens are tilized to assess analysis method. The VFIFE method using in this study is one of the particle-based methods. The VFIFE method is included with the point value description, path element and convected material frame as the important characteristics. Thus, the RC structure is represented by finite particles. Each particle is subjected to the external forces and internal forces. The particle satisfies the Newton’s Law. A fictitious reversed rigid body motion is used to remove the rigid body motion from the deformations of the element. Pushover analysis is large deformation analysis. The conventional finite element method base program such as ETABS can encounter numerical difficulties in converging to a correct solution during an analysis involving large element deformation, highly non-linear plasticity or contact between surfaces. This research applied the VFIFE to solve the problems that usually occur on finite element program while performing pushover analysis. The analysis results show that for complex structures, VFIFE still could perform the pushover analysis until all the elements were collapsed but ETABS could not continue the analysis after reach the performance point. Automatically, VFIFE can predict better result in ductility rather than ETABS. As indicated in analysis results, better performance is identified in initial stiffness, yield strength, maximum strength, or steady strength of specimens when compared with lab test results. Biases are within the tolerance range. Additionally, when failure model of specimens is compared, similar performance with lab test result is found. Hence, analysis method proposed by this paper is able to effectively simulate seismic capacity and failure behaviour of RC buildings

    Finding a Fair Land Dispute Settlement Mechanism Between Adat Law Community Vs. Investor

    Full text link
    Land utilization for investment in local areas raises various land related problems that ends with conflicts within the community. A conflict that occurs, usually begins with the management of communal land “tanah ulayat” within the adat law community environment, and in this case, land utilization that is managed by the third party (investors). The basic problem is the difference of perception and expectations toward the company that exists in the land which is claimed by the community. Both parties have their own claim on the land based on each legal systems, in this situation adat law or local law faced with state law which is used by investors. So far, the Indonesian government has yet to have legal grounds in giving a directions for land dispute/conflict settlement mechanism. This paper attempts to give an input regarding a land dispute settlement mechanism that can be accepted for all disputing parties. The paper features critical analysis using legal pluralism approach towards related government policies and technical regulations in the ministerial level. These regulations, among others are, Minister of Agrarian Regulation No. 5 of 1999 on the Guidance for Dispute Settlement of Communal Land Rights, and Ministry of Agrarian and Spatial Affairs Regulation No. 9 of 2015 on Procedures of Appointment of Communal Land Rights for Adat Law Community and Communities Located in certain regions, also the draft of Law regarding Recognition and Protection of Adat Law Community

    Sympathetic-correlated c-Fos expression in the neonatal rat spinal cord in vitro

    Get PDF
    An isolated thoracic spinal cord of the neonatal rat in vitro spontaneously generates sympathetic nerve discharge (SND) at ~25°C, but it fails in SND genesis at ≤ 10°C. Basal levels of the c-Fos expression in the spinal cords incubated at ≤ 10°C and ~25°C were compared to determine the anatomical substrates that might participate in SND genesis. Cells that exhibited c-Fos immunoreactivity were virtually absent in the spinal cords incubated at ≤ 10°C. However, in the spinal cords incubated at ~25°C, c-Fos-positive cells were found in the dorsal laminae, the white matter, lamina X, and the intermediolateral cell column (IML). Cell identities were verified by double labeling of c-Fos with neuron-specific nuclear protein (NeuN), glial fibrillary acidic protein (GFAP), or choline acetyltransferase (ChAT). The c-Fos-positive cells distributed in the white matter and lamina X were NeuN-negative or GFAP-positive and were glial cells. Endogenously active neurons showing c-Fos and NeuN double labeling were scattered in the dorsal laminae and concentrated in the IML. Double labeling of c-Fos and ChAT confirmed the presence of active sympathetic preganglionic neurons (SPNs) in the IML. Suppression of SND genesis by tetrodotoxin (TTX) or mecamylamine (MECA, nicotinic receptor blocker) almost abolished c-Fos expression in dorsal laminae, but only mildly affected c-Fos expression in the SPNs. Therefore, c-Fos expression in some SPNs does not require synaptic activation. Our results suggest that spinal SND genesis is initiated from some spontaneously active SPNs, which are capable of TTX- or MECA-resistant c-Fos expression

    Singlets in gauge theories with fundamental matter

    Full text link
    We provide the first determination of the mass of the lightest flavor-singlet pseudoscalar and scalar bound states (mesons), in the Sp(4)\rm{Sp}(4) Yang-Mills theory coupled to two flavors of fundamental fermions, using lattice methods. This theory has applications both to composite Higgs and strongly-interacting dark matter scenarios. We find the singlets to have masses comparable to those of the light flavored states, which might have important implications for phenomenological models. We focus on regions of parameter space corresponding to a moderately heavy mass regime for the fermions. We compare the spectra we computed to existing and new results for SU(2)\rm{SU}(2) and SU(3)\rm{SU}(3) theories, uncovering an intriguing degree of commonality. As a by-product, in order to perform the aforementioned measurements, we implemented and tested, in the context of symplectic lattice gauge theories, several strategies for the treatment of disconnected-diagram contributions to two-point correlation functions. These technical advances set the stage for future studies of the singlet sector in broader portions of parameter space of this and other lattice theories with a symplectic gauge group.Comment: 26 pages, 7 figures, 6 table

    Isolation and characterization of stromal progenitor cells from ascites of patients with epithelial ovarian adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>At least one-third of epithelial ovarian cancers are associated with the development of ascites containing heterogeneous cell populations, including tumor cells, inflammatory cells, and stromal elements. The components of ascites and their effects on the tumor cell microenvironment remain poorly understood. This study aimed to isolate and characterize stromal progenitor cells from the ascites of patients with epithelial ovarian adenocarcinoma (EOA).</p> <p>Methods</p> <p>Seventeen ascitic fluid samples and 7 fresh tissue samples were collected from 16 patients with EOA. The ascites samples were then cultured in vitro in varying conditions. Flow cytometry and immunocytochemistry were used to isolate and characterize 2 cell populations with different morphologies (epithelial type and mesenchymal type) deriving from the ascites samples. The in vitro cell culture model was established using conditional culture medium.</p> <p>Results</p> <p>The doubling times of the epithelial type and mesenchymal type cells were 36 h and 48 h, respectively, indicating faster growth of the epithelial type cells compared to the mesenchymal type cells. Cultured in vitro, these ascitic cells displayed the potential for self-renewal and long-term proliferation, and expressed the typical cancer stem/progenitor cell markers CD44<sup>high</sup>, CD24<sup>low</sup>, and AC133<sup>+</sup>. These cells also demonstrated high BMP-2, BMP4, TGF-β, Rex-1, and AC133 early gene expression, and expressed EGFR, integrin α<sub>2</sub>β<sub>1</sub>, CD146, and Flt-4, which are highly associated with tumorigenesis and metastasis. The epithelial type cells demonstrated higher cytokeratin 18 and E-cadherin expression than the mesenchymal type cells. The mesenchymal type cells, in contrast, demonstrated higher AC133, CD73, CD105, CD117, EGFR, integrin α<sub>2</sub>β<sub>1</sub>, and CD146 surface marker expression than the epithelial type cells.</p> <p>Conclusion</p> <p>The established culture system provides an in vitro model for the selection of drugs that target cancer-associated stromal progenitor cells, and for the development of ovarian cancer treatments.</p
    corecore