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Abstract. This study aims to build numerical model of retrofitting analysis of Reinforced 
Concrete (RC) buildings with vector form intrinsic finite element (VIFIFE).  Fiber element 
method is introduced in the paper to acquire the moment-curvature relation of the section and 
to define the behaviour of RC material. This paper also uses equivalent truss to build the 
analysis model of brick wall. In the end, lab and in-situ test specimens are utilized to assess 
analysis method.  

The VFIFE method using in this study is one of the particle-based methods. The VFIFE 
method is included with the point value description, path element and convected material frame 
as the important characteristics. Thus, the RC structure is represented by finite particles. Each 
particle is subjected to the external forces and internal forces. The particle satisfies the 
Newton’s Law. A fictitious reversed rigid body motion is used to remove the rigid body motion 
from the deformations of the element. 

Pushover analysis is large deformation analysis. The conventional finite element method 
base program such as ETABS can encounter numerical difficulties in converging to a correct 
solution during an analysis involving large element deformation, highly non-linear plasticity or 
contact between surfaces. This research applied the VFIFE to solve the problems that usually 
occur on finite element program while performing pushover analysis. The analysis results show 
that for complex structures, VFIFE still could perform the pushover analysis until all the 
elements were collapsed but ETABS could not continue the analysis after reach the 
performance point. Automatically, VFIFE can predict better result in ductility rather than 
ETABS. 

As indicated in analysis results, better performance is identified in initial stiffness, yield 
strength, maximum strength, or steady strength of specimens when compared with lab test 
results. Biases are within the tolerance range. Additionally, when failure model of specimens is 
compared, similar performance with lab test result is found. Hence, analysis method proposed 
by this paper is able to effectively simulate seismic capacity and failure behaviour of RC 
buildings.   
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1 INTRODUCTION 
Currently, Seismic design criteria tend to shift from the force based procedure to 

performance based procedure for design and evaluation purpose. The nonlinear static analysis, 
which is also called pushover analysis, is a transparent and efficient method for predicting 
seismic behavior of the structures. The accuracy of the pushover analysis depends on the well-
defined properties of nonlinear hinges in structure elements. This method appears in all 
publications of ATC-40 Report [1], and ASCE 41 report [2], which is the latest in a series of 
document developed to assist engineers with the seismic assessment and rehabilitation of 
existing buildings [3, 4]. 

Software programs such as ETABS, SAP2000, and Perform3D are used to perform pushover 
analysis. Finite element method is adopted by the programs. Finite element method can 
encounter numerical difficulties in converging to a correct solution during an analysis involving 
large element deformation, highly non-linear plasticity or contact between surfaces.  

The nonlinear analysis of a structure is an iterative procedure. It depends on the final 
displacement, as the effective damping depends on the hysteretic energy loss due to inelastic 
deformations, which in turn depends on the final displacement. This makes the analysis 
procedure iterative.  

The vector form intrinsic finite element (VFIFE) method can overcome the large 
deformation from pushover analysis. The VFIFE is a vector mechanics-based mathematical 
calculation method for structures with large deformations. It is based on an intrinsic finite-
element modeling approach, an explicit algorithm, and a corotational formulation of kinematics 
[5~7]. The primary objective of this method is to handle the motion and deformation of a system 
of multiple continuous bodies and their interactions. The VFIFE method considers that the 
motion of a structure can be represented by a finite particles. 

 
2  VECTOR FORM INTRINSIC FINITE ELEMENT (VFIFE) METHOD 

2.1 Fundamentals of the Vector Form Intrinsic Finite Element (VFIFE) Method 
The VFIFE is a vector mechanics-based mathematical calculation method for structures with 

large deformations. It is based on an intrinsic finite-element modelling approach, an explicit 
algorithm, and a corotational formulation of kinematics [5~7]. The primary objective of this 
method is to handle the motion and deformation of a system of multiple continuous bodies and 
their interactions.  

The main objective of the VFIFE method development is to estimate the structural responses 
under various types of loading conditions especially from the continuous states to the 
discontinuous states of the structures. It is expected that VFIFE method could consider the 
geometrical and mechanical properties of the structure during the motion accurately. 
Nevertheless, the VFIFE method modelling concept of the structure is represented by finite 
particles, so that the conventional nonlinear structural analysis methods (CNSAM) could not 
be applied. The VFIFE method establish a new analysis strategy based on the intrinsic theories 
of mechanics[5] and avoid the difficulties such as the iterative and perturbation procedures in 
solving partial differential equations commonly adopted in the CNSAM. The primary concept 
of VFIFE is that the structure is illustrated as a system composed of particles and forces 
components. The forces that acting on the particles include the internal forces and external 
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forces. There are general assumptions that used to explain the deformation of the structure: 
1. The internal forces are calculated from the deformations of structural members such as truss, 
frame, or solid elements. 
2. Each structural members has geometry and position changes simultaneously. The changes of 
the geometry and the position for the deformable structure are not separated. 
3. Each particles might has their own motion trajectory. 

According to these assumptions, the associated analytical operations will use: 
a. Point value description (PVD) 
b. Path element.  
c. Convected material frame (CMF).  
Types of the particles and internal forces from the deformation of the frame element  for 

each of above assumptions will be explained in the following sections. 

2.2  Point value description (PVD) 
The characteristic of the VFIFE analysis that use PVD concept could be seen from Figure 1. 

Numerical procedures that use VFIFE method can be solved by using the vector form concept 
and PVD. The deformations and motions of a structure are represented by the positions of the 
particles in spatial-temporal space and discrete times points that shown in Figure 1(a). The 
discrete time points is used by the PVD to describe the whole time trajectory of deformable 
body. The VFIFE method does not use a continuous time function such as 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡), the 
response parameters such as displacement, and velocity are not continuous function of time and 
position in the whole time trajectory which is different from the conventional analysis methods. 
Therefore, it does not involve in solving the partial differential equations for structural members 
because the equations of motion of the particles at each different time point are built using 
Newton's law. The reference configuration of the structure at time 𝑡𝑡𝑎𝑎  can be identified by 
connecting the representative particles ( 𝑖𝑖𝑎𝑎, 𝑗𝑗𝑎𝑎, 1𝑎𝑎, 2𝑎𝑎, 𝑎𝑎𝑎𝑎𝑎𝑎 3𝑎𝑎)  .The trajectory of any 
representative particles fulfil the definition of a path element at each set of time points (𝑒𝑒. 𝑔𝑔. 𝑖𝑖 −
𝑖𝑖1, 𝑖𝑖1 − 𝑖𝑖𝑎𝑎, 𝑖𝑖𝑎𝑎 − 𝑖𝑖𝑡𝑡, 𝑖𝑖𝑡𝑡 − 𝑖𝑖𝑏𝑏, 𝑖𝑖𝑏𝑏 − 𝑖𝑖𝑐𝑐, 𝑖𝑖𝑐𝑐 − 𝑖𝑖𝑓𝑓 in Figure 1(b)). The PVD and the function of time 
trajectory are shown in Fig. 1(b). The dotted line represents the particle trajectories from the 
positions at time 𝑡𝑡0 to positions at time 𝑡𝑡𝑓𝑓.  

  
(a) Particles in the spatial-temporal space (X, Y, Z, t) (b) Structure configurations and the trajectories 

Figure 1: Motion of a structure in VFIFE method 
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2.3 Path element and types of the particle 
The motion of a structure is needed in order to introduce the concept of path element that 

shown in Figure 2(a). The whole time trajectory of the particles i and j are the end particles of 
the structure members. The PVD is used to describe the whole time trajectory of particles i and 
j. For instance, a series of time points (𝑡𝑡0 < 𝑡𝑡1 <. . . . . 𝑡𝑡𝑎𝑎 < 𝑡𝑡 < 𝑡𝑡𝑏𝑏 < 𝑡𝑡𝑐𝑐. . . < 𝑡𝑡𝑓𝑓) is being used 
to represent the entire time for the particle i. If the time interval is (𝑡𝑡𝑎𝑎, 𝑡𝑡𝑏𝑏), a

ix  and b
ix  are 

position vectors of the particle i at time 𝑡𝑡𝑎𝑎 and 𝑡𝑡𝑏𝑏 , and if the point values (𝑡𝑡𝑎𝑎, a
ix ) and (𝑡𝑡𝑏𝑏, b

ix ) 
are known. Afterwards the time trajectory of the particles in time interval (𝑡𝑡𝑎𝑎, 𝑡𝑡𝑏𝑏) could be 
described by using a position function xi(t). 
 baii tttt  ),(xx  (1) 

The position function xi(t) is in vector form. Hence, it is defined as a position vector time 
function and abbreviated as position vector. The xi(t) can be used to fulfil the equations of 
motion for the particles, or any physical conditions such as a fixed support of a structure. The 
motion of the frame element i-j in the time interval (𝑡𝑡𝑎𝑎, 𝑡𝑡𝑏𝑏) as shown in Figure 2(a) could be 
described by using two position vectors (𝒙𝒙𝑖𝑖(𝑡𝑡), 𝒙𝒙𝑗𝑗(𝑡𝑡)).  

According to the physical conditions of the particles, three basic types of the particles are 
presented as follows: 

1. Motion particle: The motion particle i has a mass, internal forces 𝒇𝒇𝑖𝑖 and external forces 
𝑭𝑭𝑖𝑖 on the particle. This mass is a constant mass. The position vector xi(t) of the motion 
particle must fulfil the Newton’s Law as follows: 

 iiii fFxm   (2) 
 where mi is the mass of the particle i. The initial conditions are: 

 a
iat x)x(  , b

ibt x)x(  , a
iat x)(x   , b

ibt x)(x     (3) 
 The path element can be viewed as a position vector xi(t) to describe the motion of 

 the particle only in the time interval (𝑡𝑡𝑎𝑎, 𝑡𝑡𝑏𝑏). 
 

2. Connected particle: The particle i in the frame element i-j is connected to the particle n 
in the frame element n-h. The position vectors of particles i and n fulfill the initial 
condition and the relationship of the two particles: 

    a
nan

a
iai tt x)(xx)(x  , )(x)(x tt ni  , ba ttt   (4) 

3. Displacement particle: The position vector of the particle i in the time interval (ta, tb) is 
established by a function of time )(tg : 

          )()(x tgti    (5) 
And the initial condition have to fulfil: 

               a
iaai tgt x)()(x    (6) 

In general, the displacement particle is for the displacement control. For instance, setting g(t) 
as a constant value 0

ix , then the position vector is: 
       0x)(x ii t    (7) 

For each type of particle, the whole time trajectory in time interval (t0, tf) needs the use of f 
path elements. Each path element determines the motion of the particle in each time interval 
and the initial time and final time could be redefined if the physical condition of the particle is 
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changed suddenly. 

 
 

(a) Path element in a series of time points 
(t0<t1<.....ta<t<tb<tc...<tf) (b) Convected Material Frame 

Figure 2: Path element and convected material frame adopted in VFIFE 

2.4 Structural models 
The structure model for a space frame in Figure 3(a) is represented in this section using many 

particles from Figure 3(b). Each particles is subjected to the internal forces or the external forces. 
The internal forces on particles could be calculated from the deformations of the frame elements.  

Interaction forces between two end particles of the element are internal forces. The particles 
1, 2, 3, and 4 from  Figure 3(b) are specified as displacement particles. The particles i, j, 5 and 
6 are specified as motion particles.  

In the traditional Finite Element Method, the particle’s position vector ),,,( tzyxx is a 
function of the current position (x,y,z) and at any time t from the initial states to the finial states.  

 
 

(a) A space frame structure (b) Forces on discrete particles in the space frame 
structure 

Figure 3: Analytical model of a space frame structure 

In VFIFE, the particle’s position vector x(t) of each particle is a time function at the interval 
of (ta, tb) only. In this case, the displacement particles are act as fixed ends. The displacements 
and rotations of the motion particle i in the global coordinates could be calculated from the 
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following equations: 
 iiii fFum   (8) 

 iiii mMβI     (9) 
where  

 
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where s is the external force and k is the moment numbers. The n represents the particle number. 
The iF and iM  are the total external forces and moments. The if  and im  are the total internal 
forces and moments. The Computation of these internal forces will be acquainted in the 
following sections. The iu  and iβ  are the particle’s displacement and rotation vectors. The im
and iI  are the particles mass and the mass moment inertia. In Eq. (12), the mass ni

im and the 
mass moment of inertia ni

iI  of the end particles of the frame element can be computed from: 
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where 
 002/1 Almni

i  , 00 x jil     (14) 

 000 xxx ijji    (15) 
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iq /ˆ  , q=1~3   (16) 

The 0l and 0A  are the length and cross-sectional area of the frame element at the initial state. 
The   and ni

im are the mass density and mass of the two ends of the frame element. 

 The ni
iI  and ni

iqI  are the ith particle’s mass moment of inertia and the moment of inertia of the 
cross-sectional area with respect to the q principal direction. The transformation matrix aΩ  and 
the principal directions will be explained in the following sections. The advantage of using path 
elements is to facilitate the computation of the material frame within the time interval (ta, tb). 
For example, geometrical changes of an element could be assumed to fulfil the following: 

(a) The initial values at time ta are required for the analysis in each path element but the 
deformation history before the time at  is not considered in VFIFE model. Moreover, the rates 
of stress such as the Jaumann and Green-Naghdi rates of Kirchhoff stress are not even 
considered because the deformations of the elements in VFIFE model are total deformations in 
each path element. Nevertheless, in the traditional Finite element method and the explicit Finite 
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element method, the deformation history and the current deformation of the frame must take 
into consideration in order to compute the incremental deformations of the structural member. 
It utilizes a position vector ),,,( tzyxx to describe the deformation of the member. Hence, it 
needs to consider the rates of stress. 

 (b) In each path elements, the element is prismatic in which the section and the material 
along the element length remain constant when the geometrical changes are neglected while 
calculating the internal forces. The stresses and strains are used. The stress and strain analysis 
of the frame element are a straight forward problems for the large displacement and small 
deformation. That is, over the entire analysis from the initial to the final states, the total 
geometrical change can still be very large. Moreover, the discontinuous changing of the 
physical properties at each time point is permitted. 

3  TEASPA METHOD 
This research utilizes VFIFE method that combine with TEASPA method [8] to perform 

pushover analysis of 3-D reinforced concrete structures compares with experimental results and 
also ETABS. It needs to add another parameters in order to perform pushover analysis with the 
most accurate result compares to the experiment result. Columns, Frame elements and a school 
building are taken as the source of database for this research. 

The shear drift capacity of the shear damage column is estimated from the following 
empirical equation. This equation is based on the observation of 50 shear-critical column 
databases that is proposed by Elwood and Moehle [9]. 

 
 𝛥𝛥𝑠𝑠

𝐻𝐻 = 3
100 + 4𝜌𝜌" − 1

133 𝑥𝑥 𝜐𝜐𝑚𝑚

√𝑓𝑓𝑐𝑐′
− 1

40 𝑥𝑥 𝑃𝑃
𝐴𝐴𝑔𝑔𝑓𝑓𝑐𝑐′

 ≥ 1
100 (17) 

   
 

where H is the length of the column; '' is the transverse reinforcement ratio as 𝐴𝐴𝑠𝑠𝑠𝑠/𝑏𝑏𝑏𝑏𝑏𝑏; 
𝐴𝐴𝑠𝑠𝑠𝑠 is the transverse reinforcement area; b is the width of column section; s is the spacing of 
the transverse reinforcement; is the maximum nominal shear stress in 𝑘𝑘𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2as V / bd ; d 
is the depth from the extreme fiber of concrete to the center line of tension reinforcement; 𝑓𝑓𝑐𝑐  

′ is 
the concrete compressive strength in 𝑘𝑘𝑘𝑘𝑘𝑘/𝑐𝑐𝑚𝑚2; and 𝐴𝐴𝑔𝑔 is the gross cross-sectional area of the 
column. The shear drift capacity is associated to the maximum shear stress, transverse steel 
ratio and also axial load. The shear drift ratio is getting lower if the axial load ratio is getting 
higher. As the nominal shear stress degrades, the shear drift ratio will increase, and the shear 
drift ratio is proportional to the amount of transverse reinforcement. 

  
The axial drift capacity of shear damage column is estimated based on the shear friction 

model proposed by Elwood and Moehle which the axial drift capacity is the function of the 
axial load, the amount of transverse reinforcement, and the critical angle [10]. 

 
 𝛥𝛥𝑎𝑎

𝐻𝐻 = 4
100 𝑥𝑥 1+(𝑡𝑡𝑡𝑡𝑡𝑡Ɵ)2

𝑡𝑡𝑡𝑡𝑡𝑡Ɵ+𝑃𝑃𝑃𝑃 𝑠𝑠
𝑘𝑘′𝐴𝐴𝑠𝑠𝑠𝑠𝑓𝑓𝑦𝑦𝑦𝑦𝑑𝑑𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡Ɵ

 (18) 

 
where 𝑓𝑓𝑦𝑦𝑦𝑦 is the yield strength of the transverse reinforcement; 𝑑𝑑𝑐𝑐  is the depth of the column 
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core from center line to center line of the ties. 
 

The flexural shear strength is the required lateral load to reach the maximum flexural 
capacity 𝑀𝑀𝑛𝑛 at column end. The flexural shear strength of a double curvature column can be 
calculated as follow: 

 
 𝑉𝑉𝑏𝑏 = 2𝑀𝑀𝑛𝑛

𝐻𝐻  (19) 
 

where 𝑀𝑀𝑛𝑛 is the nominal moment strength of a reinforced concrete column. 
 

The nonlinear moment hinge is placed at the both ends of the column to present the flexural 
failure mode or flexural-shear failure mode. The parameters of the nonlinear hinge of the 
column are calculated as follows: 

 
 𝑎𝑎 =  𝛥𝛥𝑠𝑠

𝐻𝐻 − 𝛥𝛥𝑦𝑦
𝐻𝐻  (20) 

 
 𝑏𝑏 = max (𝛥𝛥𝑎𝑎

𝐻𝐻 ; 𝛥𝛥𝑠𝑠
𝐻𝐻 ) (21) 

 
 𝛥𝛥𝑦𝑦 = 𝑉𝑉𝑏𝑏

𝑘𝑘 = 𝑉𝑉𝑏𝑏𝐻𝐻3

12𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝐼𝐼𝑔𝑔
 (22) 

 
Moment SF = 𝑀𝑀𝑛𝑛 ; Rotation SF = 1; is the stiffness coefficient that consider the reduction 

of the element stiffness on second order analysis.  
According to ACI 318-05[11], it is permitted to assume = 0.35. The nonlinear shear hinge 

is placed at the middle of the column to illustrate the shear failure mode. The parameter are 
calculated as follows: 

 
 𝑐𝑐 = min (𝛥𝛥𝑠𝑠

𝐻𝐻 ; 0.04) (23) 
 

Force SF = 𝑉𝑉𝑛𝑛; Displacement SF = H. 
 

4  CASE STUDY 
Each specimens was model using ETABS program and VFIFE program. The plastic hinges 

of elements of the model were calculated and defined by using modified TEASPA method. 
Finally the pushover curves were obtained by solving nonlinear problem by using the ETABS 
program and VFIFE program.  Based on the experimental results, the beam was remained in 
elastic behavior. The failures were occurred in columns and brick walls so there are no plastic 
hinges on beam from our models in ETABS and VFIFE. 
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Figure 4: Base shear - Displacement comparison of 

H25-L 
Figure 5: Base shear - Displacement comparison of 

H25-M 

  
Figure 6: Base shear - Displacement comparison of 

PF 
Figure 7: Base shear - Roof Displacement 

comparison of PF6 
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Figure 8: Base shear - Roof displacement comparison of Guanmiao 

Figure 4 and Figure 5 are shown that the stiffness from ETABS and VFIFE of each column 
specimens has a higher stiffness compares to experimental result. It shows that the stiffness 
coefficient from TEASPA method is too large for the column specimen. 

 The ultimate strength from ETABS and VFIFE are lower than the experimental result. 
ETABS and VFIFE show much the same result for column specimens. For columns with high 
axial load have displacement almost half compares with small axial load columns but their 
strength are lower.  

 Figure 6 and Figure 7 illustrate that the initial stiffness for both specimen are 
approximately the same. The ultimate strength from VFIFE and ETABS are almost the same 
with the experimental result. The PF specimen shows the same ductility for both VFIFE and 
ETABS. However, The ductility from ETABS is different from VFIFE for specimen PF6. It 
shows that after reach the ultimate point, ETABS could not continue to obtain the displacement 
result. It indicates that ETABS is not suitable for a complex model for pushover analysis. 
VFIFE still could continue the pushover analysis until most of the elements were collapsed.  

Figure 8 illustrates the comparison among the pushover curves obtained by the two analysis 
cases and the test. Obviously, the results of the analysis cases are conservative in comparison 
with the test. Figure 8 indicates that the stiffness of the pushover curve obtained from both 
VFIFE and ETABS are significantly smaller than the stiffness measured from the test. The 
imperfect condition of the test may account for the problem. The specimen was created from 
the real building; therefore, some non-structure elements not be taken in the analysis may 
contribute to increase the stiffness of the specimens. 

It also indicates the same situation with the PF6 specimen for ETABS analysis. It will stop 
the pushover analysis after reach the performance point. It is happened because of pushover 
analysis is a large deformation analysis. Finite element method in this case ETABS can 
encounter numerical difficulties in converging to a correct solution during an analysis involving 
large element deformation, highly non-linear plasticity or contact between surfaces.  

The nonlinear analysis of a structure is an iterative procedure. It depends on the final 
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displacement, as the effective damping depends on the hysteretic energy loss due to inelastic 
deformations, which in turn depends on the final displacement. This makes the analysis 
procedure iterative. Difficulty in the solution is faced near the ultimate load, as the stiffness 
matrix at this point becomes negative definite due to instability of the structure becoming a 
mechanism .Therefore, the result of a specimen that starts to collapse while performing 
pushover analysis with finite element software will shown inaccurate result.  

 

5  CONCLUSIONS  
Several main conclusions of this research are gathered as follows: 

1. Analysis results for Column specimens using ETABS and VFIFE show approximately             
the same results in stiffness, ultimate base shear and also the ductility. For columns with high 
axial load have displacement almost half compares with small axial load columns but their 
strength are lower.  
2. For PF specimen which is one story pure frame, ETABS and VFIFE also show more or less 
the same results in stiffness, ultimate base shear and also the ductility. For PF6 specimen also 
shows approximately the same in initial stiffness and ultimate base shear.  However, the 
ductility between ETABS and VFIFE are not the same. After reach the ultimate value, ETABS 
can't continue to show the deformation but VFIFE could continue to do the pushover until most 
of elements failed . It indicates that ETABS is not capable for Pushover Analysis for complex 
structures. 
3.  The stiffness of the pushover curve obtained from both VFIFE and ETABS are significantly 
smaller than the stiffness and shear strength measured from the test for Guanmiao School 
Building  specimen. The imperfect condition of the test may account for the problem. The 
specimen was created from the real building; therefore, some non-structure elements not be 
taken in the analysis may contribute to increase the stiffness of the specimens. The ductility 
from ETABS has the same problem with PF6 specimen if it compares with VFIFE. 
4. From all the analysis results, They show tendency that the more complex the specimen, the 
softer the stiffness. 
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