36 research outputs found

    Standardized risk-stratified cardiac assessment and early posttransplant cardiovascular complications in kidney transplant recipients

    Get PDF
    IntroductionCardiovascular disease (CVD) is the leading cause of morbidity and mortality in kidney transplant recipient (KTR). There is a dearth of standardized guidelines on optimal cardiovascular evaluation of transplant candidates.MethodsThis single-center cohort study aims to determine the effectiveness of our standardized risk-stratified pretransplant cardiovascular screening protocol, which includes coronary angiography (CAG), in identifying advanced CVD, the proper pretransplant management of which could lead to a reduction in the incidence of major cardiac events (MACE) in the early posttransplant period.ResultsOut of the total 776 KTR transplanted between 2017 and 2019, CAG was performed on 541 patients (69.7%), of whom 22.4% were found to have obstructive coronary artery disease (CAD). Asymptomatic obstructive CAD was observed in 70.2% of cases. In 73.6% of cases, CAG findings resulted in myocardial revascularization. MACE occurred in 5.6% (N = 44) of the 23 KTR with pretransplant CVD and 21 without pretransplant CVD. KTR with posttransplant MACE occurrence had significantly worse kidney graft function at the first year posttransplant (p = 0.00048) and worse patient survival rates (p = 0.0063) during the 3-year follow-up period compared with KTR without MACE. After adjustment, the independent significant factors for MACE were arrhythmia (HR 2.511, p = 0.02, 95% CI 1.158–5.444), pretransplant history of acute myocardial infarction (HR 0.201, p = 0.046, 95% CI 0.042–0.970), and pretransplant myocardial revascularization (HR 0.225, p = 0.045, 95% CI 0.052–0.939).ConclusionAsymptomatic CVD is largely prevalent in KTR. Posttransplant MACE has a negative effect on grafts and patient outcomes. Further research is needed to assess the benefits of pretransplant myocardial revascularization in asymptomatic kidney transplant candidates

    Effect of induction therapy on the expression of molecular markers associated with rejection and tolerance

    Get PDF
    Background Induction therapy can improve kidney transplantation (KTx) outcomes, but little is known about the mechanisms underlying its effects. Methods The mRNA levels of T cell-related genes associated with tolerance or rejection (CD247, GZMB, PRF1, FOXP3, MAN1A1, TCAIM, and TLR5) and lymphocyte subpopulations were monitored prospectively in the peripheral blood of 60 kidney transplant recipients before and 7, 14, 21, 28, 60, 90 days, 6 months, and 12 months after KTx. Patients were treated with calcineurin inhibitor- based triple immunosuppression and induction with rabbit anti-thymocyte globulin (rATG, n = 24), basiliximab (n = 17), or without induction (no- induction, n = 19). A generalized linear mixed model with gamma distribution for repeated measures, adjusted for rejection, recipient/donor age and delayed graft function, was used for statistical analysis. Results rATG treatment caused an intense reduction in all T cell type population and natural killer (NK) cells within 7 days, then a slow increase and repopulation was observed. This was also noticed in the expression levels of CD247, FOXP3, GZMB, and PRF1. The basiliximab group exhibited higher CD247, GZMB, FOXP3 and TCAIM mRNA levels and regulatory T cell (Treg) counts than the no-induction group. The levels of MAN1A1 and TLR5 mRNA expressions were increased, whereas TCAIM decreased in the rATG group as compared with those in the no-induction group. Conclusion The rATG induction therapy was associated with decreased T and NK cell-related transcript levels and with upregulation of two rejection- associated transcripts (MAN1A1 and TLR5) shortly after KTx. Basiliximab treatment was associated with increased absolute number of Treg cells, and increased level of FOXP3 and TCAIM expression

    From a Biomarker to Targeting in a Proof-Of-Concept Trial

    Get PDF
    Background There is high medical need for safe long-term immunosuppression monotherapy in kidney transplantation. Selective targeting of post-transplant alloantigen-(re)activated effector-T cells by anti-TNF antibodies after global T cell depletion may allow safe drug minimization, however, it is unsolved what might be the best maintenance monotherapy. Methods In this open, prospective observational single-centre trial, 20 primary deceased donor kidney transplant recipients received 2x20 mg Alemtuzumab (d0/d1) followed by 5 mg/kg Infliximab (d2). For 14 days all patients received only tacrolimus, then they were allocated to either receive tacrolimus (TAC, n = 13) or sirolimus (SIR, n = 7) monotherapy, respectively. Protocol biopsies and extensive immune monitoring were performed and patients were followed-up for 60 months. Results TAC-monotherapy resulted in excellent graft survival (5yr 92%, 95%CI: 56.6–98.9) and function, normal histology, and no proteinuria. Immune monitoring revealed low intragraft inflammation (urinary IP-10) and hints for the development of operational tolerance signature in the TAC- but not SIR-group. Remarkably, the TAC-monotherapy was successful in all five presensitized (ELISPOT+) patients. However, recruitment into SIR-arm was stopped (after n = 7) because of high incidence of proteinuria and acute/chronic rejection in biopsies. No opportunistic infections occurred during follow-up. Conclusions In conclusion, our novel fast-track TAC- monotherapy protocol is likely to be safe and preliminary results indicated an excellent 5-year outcome, however, a full–scale study will be needed to confirm our findings. Trial Registration EudraCT Number: 2006-003110-1

    On the clinical relevance of using complete high-resolution HLA typing for an accurate interpretation of posttransplant immune-mediated graft outcomes

    Get PDF
    Complete and high-resolution (HR) HLA typing improves the accurate assessment of donor-recipient compatibility and pre-transplant donor-specific antibodies (DSA). However, the value of this information to identify de novo immune-mediated graft events and its impact on outcomes has not been assessed. In 241 donor/recipient kidney transplant pairs, DNA samples were re-evaluated for six-locus (A/B/C/DRB1/DQB1+A1/DPB1) HR HLA typing. De novo anti-HLA antibodies were assessed using solid-phase assays, and dnDSA were classified either (1) as per current clinical practice according to three-locus (A/B/DRB1) low-resolution (LR) typing, estimating donor HLA-C/DQ typing with frequency tables, or (2) according to complete six-locus HR typing. The impact on graft outcomes was compared between groups. According to LR HLA typing, 36 (15%) patients developed dnDSA (LR_dnDSA+). Twenty-nine out of 36 (80%) were confirmed to have dnDSA by HR typing (LR_dnDSA+/HR_dnDSA+), whereas 7 (20%) did not (LR_dnDSA+/HR_dnDSA-). Out of 49 LR_dnDSA specificities, 34 (69%) were confirmed by HR typing whereas 15 (31%) LR specificities were not confirmed. LR_dnDSA+/HR_dnDSA+ patients were at higher risk of ABMR as compared to dnDSA- and LR_dnDSA+/HR_dnDSA- (logRank < 0.001), and higher risk of death-censored graft loss (logRank = 0.001). Both LR_dnDSA+ (HR: 3.51, 95% CI = 1.25-9.85) and LR_dnDSA+/HR_dnDSA+ (HR: 4.09, 95% CI = 1.45-11.54), but not LR_dnDSA+/HR_dnDSA- independently predicted graft loss. The implementation of HR HLA typing improves the characterization of biologically relevant de novo anti-HLA DSA and discriminates patients with poorer graft outcomes

    Tacrolimus CYP3A Single-Nucleotide Polymorphisms and Preformed T- and B-Cell Alloimmune Memory Improve Current Pretransplant Rejection-Risk Stratification in Kidney Transplantation

    Full text link
    Achieving fast immunosuppression blood exposure after kidney transplantation is key to abrogating both preformed and de novo anti-donor humoral and cellular alloresponses. However, while tacrolimus (TAC) is the cornerstone immunosuppressant inhibiting adaptive alloimmunity, its blood exposure is directly impacted by different single-nucleotide polymorphisms (SNPs) in CYP3A TAC-metabolizing enzymes. Here, we investigated how functional TAC-CYP3A genetic variants (CYP3A4*22/CYP3A5*3) influence the main baseline clinical and immunological risk factors of biopsy-proven acute rejection (BPAR) by means of preformed donor-specific antibodies (DSAs) and donor-specific alloreactive T cells (DSTs) in a large European cohort of 447 kidney transplants receiving TAC-based immunosuppression. A total of 70 (15.7%) patients developed BPAR. Preformed DSAs and DSTs were observed in 12 (2.7%) and 227 (50.8%) patients, respectively. According to the different CYP3A4*22 and CYP3A5*3 functional allele variants, we found 4 differential new clusters impacting fasting TAC exposure after transplantation; 7 (1.6%) were classified as high metabolizers 1 (HM1), 71 (15.9%) as HM2, 324 (72.5%) as intermediate (IM), and 45 (10.1%) as poor metabolizers (PM1). HM1/2 showed significantly lower TAC trough levels and higher dose requirements than IM and PM (p < 0.001) and more frequently showed TAC underexposure (<5 ng/ml). Multivariate Cox regression analyses revealed that CYP3A HM1 and IM pharmacogenetic phenotypes (hazard ratio (HR) 12.566, 95% CI 1.99-79.36, p = 0.007, and HR 4.532, 95% CI 1.10-18.60, p = 0.036, respectively), preformed DSTs (HR 3.482, 95% CI 1.99-6.08, p < 0.001), DSAs (HR 4.421, 95% CI 1.63-11.98, p = 0.003), and delayed graft function (DGF) (HR 2.023, 95% CI 1.22-3.36, p = 0.006) independently predicted BPAR. Notably, a significant interaction between T-cell depletion and TAC underexposure was observed, showing a reduction of the BPAR risk (HR 0.264, 95% CI 0.08-0.92, p = 0.037). Such variables except for DSAs displayed a higher predictive risk for the development of T cell-mediated rejection (TCMR). Refinement of pretransplant monitoring by incorporating TAC CYP3A SNPs with preformed DSAs as well as DSTs may improve current rejection-risk stratification and help induction treatment decision-making

    Identifikace a charakterizace vyvojove specifickych glykoproteinu mikrospor a pylu tabaku.

    No full text
    Available from STL, Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Intrarenal Complement System Transcripts in Chronic Antibody-Mediated Rejection and Recurrent IgA Nephropathy in Kidney Transplantation

    No full text
    Background: The complement system activation and regulation have been linked to post-transplant pathologies including chronic antibody mediated rejection (cAMR) and the recurrence of IgA nephropathy (ReIgAN) but distinct mechanisms remain to be elucidated.Methods: In this retrospective single center study, the outcome of kidney transplantation was studied in 150 patients with late histological diagnosis to be either cAMR or ReIgAN, 14 stable kidney grafts at 3 months and finally 11 patients with native kidney IgAN nephropathy. To study a role of complement cascade and regulation in cAMR and ReIgAN, the RNA was extracted from available frozen kidney biopsy samples and using RT-qPCR transcripts of 11 target genes along with clinical data were determined and compared with stable grafts at 3 months protocol biopsies or IgAN native kidney nephropathy. Immunohistologically, CD46 (MCP), and C5 proteins were stained in biopsies.Results: Interestingly, there were no differences in kidney graft survival between cAMR and ReIgAN since transplantation. cAMR was associated with significantly higher intragraft transcripts of C3, CD59, and C1-INH as compared to ReIgAN (p &lt; 0.05). When compared to normal stable grafts, cAMR grafts exhibited higher C3, CD55, CD59, CFH, CFI, and C1-INH (p &lt; 0.01). Moreover, ReIgAN was associated with the increase of CD46, CD55, CD59 (p &lt; 0.01), and CFI (p &lt; 0.05) transcripts compared with native kidney IgAN. Rapid progression of cAMR (failure at 2 years after biopsy) was observed in patients with lower intrarenal CD55 expression (AUC 0.77, 78.6% sensitivity, and 72.7 specificity). There was highly significant association of several complement intrarenal transcripts and the degree of CKD regardless the diagnosis; C3, CD55, CFH, CFI, and C1-INH expressions positively correlated with eGFR (for all p &lt; 0.001). Neither the low mRNA transcripts nor the high mRNA transcripts biopsies were associated with distinct trend in MCP or C5 proteins staining.Conclusions: The intrarenal complement system transcripts are upregulated in progressively deteriorated kidney allografts

    Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes

    No full text
    Long-term peritoneal dialysis (PD) is associated with functional and structural alterations of the peritoneal membrane. Inflammation may be the key moment, and, consequently, fibrosis may be the end result of chronic inflammatory reaction. The objective of the present study was to identify genes involved in peritoneal alterations during PD by comparing the transcriptome of peritoneal cells in patients with short- and long-term PD. Peritoneal effluent of the long dwell of patients with stable PD was centrifuged to obtain peritoneal cells. The gene expression profiles of peritoneal cells using microarray between patients with short- and long-term PD were compared. Based on microarray analysis, 31 genes for quantitative RT-PCR validation were chosen. A 4-h peritoneal equilibration test was performed on the day after the long dwell. Transport parameters and protein appearance rates were assessed. Genes involved in the immune system process, immune response, cell activation, and leukocyte and lymphocyte activation were found to be substantially upregulated in the long-term group. Quantitative RT-PCR validation showed higher expression of CD24, lymphocyte antigen 9 (LY9), TNF factor receptor superfamily member 4 (TNFRSF4), Ig associated-α (CD79A), chemokine (C-C motif) receptor 7 (CCR7), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and IL-2 receptor-α (IL2RA) in patients with long-term PD, with CD24 having the best discrimination ability between short- and long-term treatment. A relationship between CD24 expression and genes for collagen and matrix formation was shown. Activation of CD24 provoked by pseudohypoxia due to extremely high glucose concentrations in dialysis solutions might play the key role in the development of peritoneal membrane alterations

    Less renal allograft fibrosis with valganciclovir prophylaxis for cytomegalovirus compared to high-dose valacyclovir: a parallel group, open-label, randomized controlled trial

    No full text
    Abstract Background Cytomegalovirus (CMV) prophylaxis may prevent CMV indirect effects in renal transplant recipients. This study aimed to compare the efficacy of valganciclovir and valacyclovir prophylaxis for CMV after renal transplantation with the focus on chronic histologic damage within the graft. Methods From November 2007 through April 2012, adult renal transplant recipients were randomized, in an open-label, single-center study, at a 1:1 ratio to 3-month prophylaxis with valganciclovir (n = 60) or valacyclovir (n = 59). The primary endpoint was moderate-to-severe interstitial fibrosis and tubular atrophy assessed by protocol biopsy at 3 years evaluated by a single pathologist blinded to the study group. The analysis was conducted in an intention-to-treat population. Results Among the 101 patients who had a protocol biopsy specimen available, the risk of moderate-to-severe interstitial fibrosis and tubular atrophy was significantly lower in those treated with valganciclovir (22% versus 34%; adjusted odds ratio, 0.31; 95% confidence interval, 0.11–0.90; P = 0.032 by multivariate logistic regression). The incidence of CMV disease (9% versus 2%; P = 0.115) and CMV DNAemia (36% versus 42%; P = 0.361) were not different at 3 years. Conclusions Valganciclovir prophylaxis, as compared with valacyclovir, was associated with a reduced risk of moderate-to-severe interstitial fibrosis and tubular atrophy in patients after renal transplantation. Trial registration Australian New Zealand Clinical Trials Registry (ACTRN12610000016033). Registered on September 26, 200
    corecore