7 research outputs found

    Emerging graphene derivatives as active 2D coordination platforms for single-atom catalysts

    Get PDF
    Single-atom catalysts (SACs) based on graphene derivatives are an emerging and growing class of materials functioning as two-dimensional (2D) metal-coordination scaffolds with intriguing properties. Recently, owing to the rich chemistry of fluorographene, new avenues have opened toward graphene derivatives with selective, spacer-free, and dense functionalization, acting as in-plane or out-of-plane metal coordination ligands. The particular structural features give rise to intriguing phenomena occurring between the coordinated metals and the graphene backbone. These include redox processes, charge transfer, emergence, and stabilization of rare or otherwise unstable metal valence states, as well as metal-support and metal-metal synergism. The vast potential of such systems has been demonstrated as enzyme mimics for cooperative mixed-valence SACs, ethanol fuel cells, and CO2 fixation; however, it is anticipated that their impact will further expand toward diverse fields, e.g., advanced organic transformations, electrochemical energy storage, and energy harvesting.Web of Science1437134991349

    Coordination effects on the binding of late 3d single metal species to cyanographene

    Get PDF
    Anchoring single metal atoms on suitable substrates is a convenient route towards materials with unique electronic and magnetic properties exploitable in a wide range of applications including sensors, data storage, and single atom catalysis (SAC). Among a large portfolio of available substrates, carbon-based materials derived from graphene and its derivatives have received growing concern due to their high affinity to metals combined with biocompatibility, low toxicity, and accessibility. Cyanographene (GCN) as highly functionalized graphene containing homogeneously distributed nitrile groups perpendicular to the surface offers exceptionally favourable arrangement for anchoring metal atoms enabling efficient charge exchange between the metal and the substrate. However, the binding characteristics of metal species can be significantly affected by the coordination effects. Here we employed density functional theory (DFT) calculations to analyse the role of coordination in the binding of late 3d cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Cu+, and Zn2+) to GCN in aqueous solutions. The inspection of several plausible coordination types revealed the most favourable arrangements. Among the studied species, copper cations were found to be the most tightly bonded to GCN, which was also confirmed by the X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and isothermal titration calorimetry (ITC) measurements. In general, the inclusion of coordination effects significantly reduced the binding affinities predicted by implicit solvation models. Clearly, to build-up reliable models of SAC architectures in the environments enabling the formation of a coordination sphere, such effects need to be properly taken into account.Web of Science25129628

    Graphene nanobeacons with high-affinity pockets for combined, selective, and effective decontamination and reagentless detection of heavy metals

    Get PDF
    Access to clean water for drinking, sanitation, and irrigation is a major sustainable development goal of the United Nations. Thus, technologies for cleaning water and quality-monitoring must become widely accessible and of low-cost, while being effective, selective, sustainable, and eco-friendly. To meet this challenge, hetero-bifunctional nanographene fluorescent beacons with high-affinity pockets for heavy metals are developed, offering top-rated and selective adsorption for cadmium and lead, reaching 870 and 450 mg g(-1), respectively. The heterobifunctional and multidentate pockets also operate as selective gates for fluorescence signal regulation with sub-nanomolar sensitivity (0.1 and 0.2 nm for Pb2+ and Cd2+, respectively), due to binding affinities as low as those of antigen-antibody interactions. Importantly, the acid-proof nanographenes can be fully regenerated and reused. Their broad visible-light absorption offers an additional mode for water-quality monitoring based on ultra-low cost and user-friendly reagentless paper detection with the naked-eye at a limit of detection of 1 and 10 ppb for Pb2+ and Cd2+ ions, respectively. This work shows that photoactive nanomaterials, densely-functionalized with strong, yet selective ligands for targeted contaminants, can successfully combine features such as excellent adsorption, reusability, and sensing capabilities, in a way to extend the material's applicability, its life-cycle, and value-for-money.Web of Science1833art. no. 220100

    Unleashing the power: Superior properties of fluorographene-derived materials for energy storage applications

    No full text
    Fluorographene exhibits a rich chemistry and a wide range of applications in energy storage devices. This review, which is based on our lab results acquired in the last decade, explores the synthesis, properties, and performance of fluorographene-based materials in supercapacitors and batteries. Fluorographene can be prepared through mechanical or chemical delamination of graphite fluoride, allowing for scalable synthesis and further chemical processing. The chemical versatility of fluorographene enables a wide portfolio of chemical reactions, leading to a new class of graphene derivatives. Graphene acid, a product of fluorographene chemistry, exhibits excellent specific capacitance, cycling stability, and rate capability. Hybridizing graphene acid with metal-organic frameworks can achieve even higher energy and power densities. Furthermore, nitrogen-doped graphene derived from fluorographene demonstrates remarkable capacitive behavior, making it an efficient electrode material for supercapacitors. Additionally, fluorographene-based materials, such as graphene acid, graphene-sulfur hybrids, and graphene-based anodes, have exhibited outstanding performance in lithium-ion and lithium-sulfur batteries. The scalable synthesis, high performance, and versatility of fluorographene-derived materials render them attractive for practical energy storage applications. The unique properties and wide range of chemistries offered by fluorographene chemistry open new possibilities for improving advanced energy storage devices

    Unveiling the true band gap of fluorographene and its origins by teaming theory and experiment

    No full text
    Fluorographene is a fully fluorinated derivative of graphene. Unlike graphene, fluorographene is a wide gap semiconductor/insulator that holds great potential for applications requiring two-dimensional dielectric nano materials. Despite growing interest and a well-defined structure, the basic questions of fluorographene's band gap nature and value remain a conundrum. Here, we resolve this long-standing issue, demonstrating a direct optical band gap at 5.75 eV by means of diffuse reflectance spectroscopy. The nature of the band gap and the factors contributing to earlier controversies are explained by combining spectroscopic methods, ab initio calculations based on the finite momentum Bethe-Salpeter equation, and structural characterization via x-ray diffraction and Raman scattering. Ab initio calculations complement the experimental results by showing an excitonic peak at 5.65 eV of a Frenkel exciton bound to a single atom. The calculations also reveal that the absorption bands at lower energies arise from the presence of fluorine vacancies in the material, which explains earlier controversies in the literature about the band gap of fluorographene.Web of Science587art. no. 15283

    Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection

    Get PDF
    Heavy metal pollutants are of great concern to environmental monitoring due to their potent toxicity. Electrochemical detection, one of the main techniques, is hindered by the mutual interferences of various heavy metal ions in practical use. In particular, the sensitivity of carbon electrodes to Cd 2+ ions (one of the most toxic heavy metals) is often overshadowed by some heavy metals (e.g. Pb 2+ and Cu 2+). To mitigate interference, metallic particles/films (e.g. Hg, Au, Bi, and Sn) typically need to be embedded in the carbon electrodes. However, these additional metallic materials may face issues of secondary pollution and unsustainability. In this study, a metal-free and sustainable nanomaterial, namely cysteamine covalently functionalized graphene (GSH), was found to lead to a 6-fold boost in the Cd 2+ sensitivity of the screen-printed carbon electrode (SPCE), while the sensitivities to Pb 2+ and Cu 2+ were not influenced in simultaneous detection. The selective enhancement could be attributed to the grafted thiols on GSH sheets with good affinity to Cd 2+ ions based on Pearson's hard and soft acid and base principle. More intriguingly, the GSH-modified SPCE (GSH-SPCE) featured high reusability with extended cycling times (23 times), surpassing the state-of-art SPCEs modified by non-covalently functionalized graphene derivatives. Last, the GSH-SPCE was validated in tap water. A metal-free thiol-modified graphene derivative introduces a reusable approach to alleviate mutual interference in electrochemical heavy metal detection

    Metal-free cysteamine-functionalized graphene alleviates mutual interferences in heavy metal electrochemical detection

    No full text
    Heavy metal pollutants are of great concern to environmental monitoring due to their potent toxicity. Electrochemical detection, one of the main techniques, is hindered by the mutual interferences of various heavy metal ions in practical use. In particular, the sensitivity of carbon electrodes to Cd2+ ions (one of the most toxic heavy metals) is often overshadowed by some heavy metals (e.g. Pb2+ and Cu2+). To mitigate interference, metallic particles/films (e.g. Hg, Au, Bi, and Sn) typically need to be embedded in the carbon electrodes. However, these additional metallic materials may face issues of secondary pollution and unsustainability. In this study, a metal-free and sustainable nanomaterial, namely cysteamine covalently functionalized graphene (GSH), was found to lead to a 6-fold boost in the Cd2+ sensitivity of the screen-printed carbon electrode (SPCE), while the sensitivities to Pb2+ and Cu2+ were not influenced in simultaneous detection. The selective enhancement could be attributed to the grafted thiols on GSH sheets with good affinity to Cd2+ ions based on Pearson's hard and soft acid and base principle. More intriguingly, the GSH-modified SPCE (GSH-SPCE) featured high reusability with extended cycling times (23 times), surpassing the state-of-art SPCEs modified by non-covalently functionalized graphene derivatives. Last, the GSH-SPCE was validated in tap water.Grant MAT2017-87202-P funded by MCIN/AEI/ 10.13039/501100011033. ICN2 is funded by CERCA programme, Generalitat de Catalunya. Grant SEV-2017-0706 funded by MCIN/AEI/ 10.13039/501100011033. Q. Y. thanks the funding of the Chinese scholarship council. D. P., V. Š. and V. H. thank the Internal Student Grant Agency of the Palacký University (IGA_PrF_2022_019). C.C.C.S. acknowledges funding through CAPES – PRINT (Programa Institucional de Internacionalização; grant #88887.310281/2018-00 and 88887.467442/2019-00) and Mackpesquisa-UPM. A. B. and M. O. acknowledge support by the project Nano4Future (no. CZ.02.1.01/0.0/0.0/16_019/0000754) financed from the ERDF and ESF. M. O. acknowledges the ERC grant 2D-CHEM, No 683024 from H2020.Peer reviewe
    corecore