38 research outputs found

    The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar rocks, Tregonning topaz granite, Cornwall

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The genetic relationship between a granite pluton and adjacent complex of rare-metal pegmatite-aplite-banded sheets (Megiliggar Sheet Complex - MSC) has been studied at the border of the Tregonning topaz granite at Megiliggar Rocks, Cornwall, SW England. Similarities in whole-rock chemical and mineralogical compositions, together with a gradual change in textures away from the granite margin, provide strong evidence for a genetic link between the Tregonning Granite and MSC. The sheets are likely to represent apophyses of residual melt which escaped from the largely crystallised roof of the granite pluton. The escaping melt was peraluminous, had a composition near the F, B, Li slightly enriched granite minimum, and, in comparison with other Cornish granites, was enriched in F, Li, Rb, Cs, Sn, W, Nb, Ta, and U, and depleted in Fe, Mg, Ca, Sr, Th, Zr, and REE. With increasing distance from the Tregonning Granite, the silicate melt crystallised as homogeneous leucogranite sheets and banded complex sheets (i.e. combinations of bands with granitic, aplitic and pegmatitic textures), then layered aplite-pegmatites; this sequence becoming progressively more depleted in the fluxing and volatile elements F, Li, Rb, and Cs, but showing no change in Zr/Hf ratios. The fixed Zr/Hf ratio is interpreted as indicating a direct genetic link (parental melt) between all rock types, however the melt progressively lost fluxing and volatile elements with distance from the granite pluton, probably due to wall-rock reaction or fluid exsolution and migration via fractures. Differentiation of the primary melt into Na-Li-F-rich and separate K-B-rich domains was the dominant chemical process responsible for the textural and mineral diversity of the MSC. On a large (cliff-section) scale, the proximal Na-Li-F-rich leucogranite passes through complex sheets into K-B-rich aplite-pegmatites, whilst at a smaller (< 1 m) scale, the K-B-rich bands are interspersed (largely overlain) by Na-Li-F-rich segregations. The grain size differences between the aplite and pegmatite could be related to pressure fluctuations and/or undercooling.Laser-ablation ICP-MS analyses of micas and tourmaline in Masaryk University Brno were supported by the Czech Science Foundation project No. GA14-13600S. All other analytical work for this contribution was supported by the RVO 67985831 in the Institute of Geology of the Czech Academy of Sciences, Praha. We are grateful to P. Davidson and an anonymous referee for their reviews

    Evasion of IFN-Îł Signaling by Francisella novicida Is Dependent upon Francisella Outer Membrane Protein C

    Get PDF
    Francisella tularensis is a Gram-negative facultative intracellular bacterium and the causative agent of the lethal disease tularemia. An outer membrane protein (FTT0918) of F. tularensis subsp. tularensis has been identified as a virulence factor. We generated a F. novicida (F. tularensis subsp. novicida) FTN_0444 (homolog of FTT0918) fopC mutant to study the virulence-associated mechanism(s) of FTT0918.The ΔfopC strain phenotype was characterized using immunological and biochemical assays. Attenuated virulence via the pulmonary route in wildtype C57BL/6 and BALB/c mice, as well as in knockout (KO) mice, including MHC I, MHC II, and ”mT (B cell deficient), but not in IFN-Îł or IFN-ÎłR KO mice was observed. Primary bone marrow derived macrophages (BMDM) prepared from C57BL/6 mice treated with rIFN-Îł exhibited greater inhibition of intracellular ΔfopC than wildtype U112 strain replication; whereas, IFN-ÎłR KO macrophages showed no IFN-Îł-dependent inhibition of ΔfopC replication. Moreover, phosphorylation of STAT1 was downregulated by the wildtype strain, but not the fopC mutant, in rIFN-Îł treated macrophages. Addition of NG-monomethyl-L-arginine, an NOS inhibitor, led to an increase of ΔfopC replication to that seen in the BMDM unstimulated with rIFN-Îł. Enzymatic screening of ΔfopC revealed aberrant acid phosphatase activity and localization. Furthermore, a greater abundance of different proteins in the culture supernatants of ΔfopC than that in the wildtype U112 strain was observed.F. novicida FopC protein facilitates evasion of IFN-Îł-mediated immune defense(s) by down-regulation of STAT1 phosphorylation and nitric oxide production, thereby promoting virulence. Additionally, the FopC protein also may play a role in maintaining outer membrane stability (integrity) facilitating the activity and localization of acid phosphatases and other F. novicida cell components

    Design and proof of concept of a continuous pressurized multi-stage fluidized bed setup for deep sour gas removal using adsorption

    Get PDF
    Pressure swing adsorption (PSA) processes are frequently used in the (petro)chemical industry, but they suffer from ineffective use of the sorbent and slow heat transfer. A pressurized multi-stage fluidized bed (MSFB) for continuous PSA is proposed in this work to overcome these drawbacks. A one stage fluidized bed adsorber was used to determine minimum fluidization velocities of the used amine sorbent at various pressures up to 10 bara. The design of a pilot scale experimental setup is described, together with supporting experiments to show the proof of concept. Removal from 37,000 mol ppm CO2 to <10 mol ppm CO2 in a few seconds was demonstrated in the pressurized MSFB adsorber. The tray efficiencies were high: often larger than 0.85. Using a numerical particle model, it was concluded that the CO2 adsorption rate is controlled via intraparticle mass transfer

    Loess and floods: High-resolution multi-proxy data of Last Glacial Maximum (LGM) slackwater deposition in the Flinders Ranges, semi-arid South Australia

    No full text
    Terrace remnants of late Pleistocene fine-grained valley-fill deposits (Silts) deeply entrenched by ephemeral traction load streams in arid areas remain a puzzle. They have been attributed to a variety of origins ranging from lacustrine to alluvial floodplains. We here report a centimetre-scale multi-proxy study of a 7 m section of Silts in the semi-arid Flinders Ranges of South Australia, which span the lead-up to and peak of the Last Glacial Maximum (LGM). The results of detailed lithostratigraphic mapping, high-resolution parametric particle-size analysis, Automated Mineralogy, induced magnetic susceptibility, carbon stable isotope geochemistry, and a chronostratigraphy based on 27 AMS radiocarbon and 6 luminescence ages are discussed in terms of sediment provenance, depositional environment and weathering history with the aim of reconstructing the regional palaeo-environment. The data are consistent with a fluctuating aeolian-fluvial interplay dominating the extended LGM environment with a greater impact on the landscape than all combined geomorphic processes since then. Accordingly, weathered slope mantles and loess accessions were eroded and entrained by numerous small and at least a dozen large-scale flood events, and trapped in an intra-montane floodplain extending into Brachina Gorge. Upstream of this narrow constriction, recurrent backflooding is discussed resulting in a thick sequence of layered to laminated slackwater couplets. Aggradation and degradation of valley-fills appear to be largely controlled by fine-sediment supply from the valley slopes, replenished by wind-blown dust from upwind playa lakes and source-bordering dunefields. In conclusion, this study demonstrates how dust storms and flooding rains can account for 'pluvial' features previously explained by the opposing effects of reduced precipitation and evaporation in the colder more arid glacial landscape of southern Australia. © 2010 Elsevier Ltd.David Haberlah, Martin A.J. Williams, Galen Halverson, Grant H. McTainsh, Steven M. Hill, Tomas Hrstka, Patricio Jaime, Alan R. Butcher and Peter Glasb

    Significant overexpression of Hsp110 gene during colorectal cancer progression

    No full text
    Colorectal cancer (CRC) is one of the most frequent malignant diseases in the world. Metastatic spread of the cancer to the lymph nodes is a crucial factor for progression and therapeutic management of the disease. We analysed gene expression profiles of CRC patiens by low-density cancer-focused oligonucleotide microarrays to identify new predictive markers of the extent of the disease and for better understanding of CRC progression. Relative expression levels of 440 genes known to be involved in cancer biology were obtained by low-density oligonucleotide microarrays from 20 tumor samples. Statistical analysis of gene expression data identified 3 genes (HSP110, HYOU1 and TCTP) significantly up-regulated in primary tumors of patients who developed lymph node metastasis. We have shown, for the first time, that up-regulation HSP110 and HYOU1 expression is associated with lymph node involvement in CRC. We validated the differences in HSP110 expression in an independent group of 30 patients of all clinical stages by real-time PCR. We identified significant up-regulation of HSP110 expression in colorectal tumors compared to adjacent non-tumoral tissue (p&lt;0.0003). We observed significant differences of HSP110 gene expression between metastatic and localized disease (p=0.031) and negative trend of HSP110 gene expression and overall survival of CRC patients. We suggest that HSP110 gene is a promising molecular predictor in CRC

    Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry

    No full text
    Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification.ISSN:2666-3864ISSN:2211-124
    corecore