15 research outputs found

    Feature Importance in the Quality of Protein Templates

    Get PDF
    Proteins are in the focus of research due to their importance as biological catalysts in various cellular processes and diseases. Since the experimental study of proteins is time-consuming and expensive, in silico prediction and analysis of proteins is common. Template-based prediction is the most reliable, which is why the aim of this study is to analyze how important are the primary features of proteins for their quality score. Statistical analysis shows that protein models with a resolution lower than 3 ƅ or R value lower than 0.25 have higher quality scores when compared individually to their counterparts. Machine learning algorithm random forest analysis also shows resolution to have the highest importance, while other features have lower but moderate importance scores. The exception is the presence of ligand in protein models, which does not have an effect on the global protein quality scores, both through statistical and machine learning analyses

    Molecular Analysis of 16s-rRNA and Associated Gene Segments for Identification of Probiotic Phenotypes

    Get PDF
    The 16s-rRNA consists of hypervariable regions (V1 ā€“ V9) that demonstrate considerable sequence diversity among different bacteria. Species-specific sequences within a given hypervariable region constitute useful targets for diagnostic assays and other scientific investigations. Usually, the size of the gene region is 1500 bp, which is large enough to be analyzed using bioinformatic tools and applied for detection. The need to advance the knowledge of the 16s-rRNA gene segments in bacterial strains would allow better understanding and better diagnostic possibilities when dealing with them. This could also be the basis for investigation of pathogenic microorganisms

    Comparison of Brita and Profissimo water filters

    Get PDF
    This research was focused on testing two water filters - Brita and Profissimo, which were filtering two and five liters of water every day. The lifespan of used filters is four weeks, while they have been actively used for eight weeks in this study to check for their efficiency after exceeded usage. Along with this, the quality of tap water, which was filtered using these two types of filters, was also tested. The experiment of the whole study was divided into three main stages: microbiological analysis, biochemical analysis, and UV-VIS spectrophotometric analysis of filtered water. The measurements were done every five days. The aim was to compare the performances of Brita and Profissimo filters after the completion of the required experiments. Based on the results that are obtained from all the analyses mentioned previously, we can conclude that Brita 2l filter was the most efficient, while Profissimo 5l filter appeared to be the least effective filter.Ā  It is important to emphasize that the tap water in Sarajevo is generally clean and drinkable, so there is a possibility that when using more polluted water, greater deviations in the operation of filters can be observed. Overall, both water filters were usable even after two months of active usage and our measurements showed good water quality which lacks impurities and is safe for drinking

    Can COVID-19 Vaccines Induce Premature Non-Communicable Diseases: Where Are We Heading to?

    Get PDF
    According to the WHO, as of January 2023, more than 850 million cases and over 6.6 million deaths from COVID-19 have been reported worldwide. Currently, the death rate has been reduced due to the decreased pathogenicity of new SARS-CoV-2 variants, but the major factor in the reduced death rates is the administration of more than 12.8 billion vaccine doses globally. While the COVID-19 vaccines are saving lives, serious side effects have been reported after vaccinations for several premature non-communicable diseases (NCDs). However, the reported adverse events are low in number. The scientific community must investigate the entire spectrum of COVID-19-vaccine-induced complications so that necessary safety measures can be taken, and current vaccines can be re-engineered to avoid or minimize their side effects. We describe in depth severe adverse events for premature metabolic, mental, and neurological disorders; cardiovascular, renal, and autoimmune diseases, and reproductive health issues detected after COVID-19 vaccinations and whether these are causal or incidental. In any case, it has become clear that the benefits of vaccinations outweigh the risks by a large margin. However, pre-existing conditions in vaccinated individuals need to be taken into account in the prevention and treatment of adverse events

    Biomedical applications of threeā€dimensional bioprinted craniofacial tissue engineering

    Get PDF
    Abstract Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscleā€like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the threeā€dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patientā€specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patientā€specific treatment plans and damage siteā€driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissueā€engineered skeletal muscle and the peripheral nervous system

    COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 associated comorbidity

    Get PDF
    The COVID-19 pandemic has been the focus of research the past two years. The major breakthrough was made by discovering pathways related to SARS-CoV-2 infection through cellular interaction by angiotensin-converting enzyme (ACE2) and cytokine storm. The presence of ACE2 in lungs, intestines, cardiovascular tissues, brain, kidneys, liver, and eyes shows that SARS-CoV-2 may have targeted these organs to further activate intracellular signalling pathways that lead to cytokine release syndrome. It has also been reported that SARS-CoV-2 can hijack coatomer protein-I (COPI) for S protein retrograde trafficking to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), which, in turn, acts as the assembly site for viral progeny. In infected cells, the newly synthesized S protein in endoplasmic reticulum (ER) is transported first to the Golgi body, and then from the Golgi body to the ERGIC compartment resulting in the formation of specific a motif at the C-terminal end. This review summarizes major events of SARS-CoV-2 infection route, immune response following host-cell infection as an important factor for disease outcome, as well as comorbidity issues of various tissues and organs arising due to COVID-19. Investigations on alterations of host-cell machinery and viral interactions with multiple intracellular signaling pathways could represent a major factor in more effective disease management

    Nanomaterials and Their Impact on the Immune System.

    Get PDF
    Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of

    Application of nanotechnology to herbal antioxidants as improved phytomedicine: An expanding horizon.

    Get PDF
    Phytotherapy, based on medicinal plants, have excellent potential in managing several diseases. A vital part of the healthcare system is herbal medicines, consisting of therapeutic agents with high safety profile and no or least adverse effects. Herbs or medicinal plants show anticancer, antioxidant, and gene-protective activity, which is useful for pharmaceutical industries. In vitro, the extract of antioxidant compounds prevents the growth of colon and liver cancer cells, followed by a dose-dependent method. The screening of extracts is done by using in vitro models. Reactive oxygen species (ROS) and free radicals lead to diseases based on age which promotes oxidative stress. Different types of ROSs available have central roles in the normal physiology and functioning of processes. Herbal or traditional plant medicines have rich antioxidant activity. Despite the limited literature on the health effect of herbal extract or spices. There are many studies examining the encouraging health effects of single phytochemicals instigating from the medicinal plant. This review provides a detailed overview on herbal antioxidants and how application of nanotechnology can improve its biological activity in managing several major diseases, and having no reported side effects
    corecore