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ABSTRACT   

Proteins are in the focus of research due to their importance as biological catalysts in various cellular 

processes and diseases. Since the experimental study of proteins is time-consuming and expensive, in silico 

prediction and analysis of proteins is common. Template-based prediction is the most reliable, which is why 

the aim of this study is to analyze how important are the primary features of proteins for their quality score. 

Statistical analysis shows that protein models with a resolution lower than 3 Å or R value lower than 0.25 

have higher quality scores when compared individually to their counterparts. Machine learning algorithm 

random forest analysis also shows resolution to have the highest importance, while other features have lower 

but moderate importance scores. The exception is the presence of ligand in protein models, which does not 

have an effect on the global protein quality scores, both through statistical and machine learning analyses. 
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1. Introduction 

Proteins/enzymes are in the focus of research since they are the catalysts for various different reactions occurring 

in biological environments [1]. The study of their mechanisms of action allows us to better understand the 

mechanisms of their work and to find treatment for diseases [1]. In order to understand the function of proteins, 

the most important goal should be to study and understand their structure since these two are directly correlated 

[2]. With better understanding of the structure and function of proteins, it is possible to manipulate/engineer 

them and contribute to the development of science/industry in many areas [3]. 

Overall, the global structure of proteins and its features are important because they can give us valuable 

information on general characteristics of a given protein. Some of the most prominent features of protein include 

their sequence length, amino acid composition, secondary structure, and subunits of protein [1]. 

The 3D structure of proteins is studied through several different techniques, the most important ones being X-

ray crystallography, NMR (nuclear magnetic resonance), and cryo-EM (cryogenic electron microscopy) [1]. 

Around 90% of protein structures in Protein Data Bank (PDB) are solved using X-ray crystallography, which 

is also the reason why this study will focus on those structures. X-ray crystallography produces structures of 

high resolution (like NMR, but unlike cryo-EM), it works with a wide range of proteins and it is highly popular. 

The main disadvantage is that it requires a crystallized sample, unlike NMR which obtains 3D structure from a 

protein in a solution [4]. 

Currently, there is a lot of research in this area in order to better understand proteins’ 3D structure. These include 

various wet lab studies whose results are published at PDB [5], implementation of machine learning algorithms 

in order to predict proteins’ enzyme class [6], [7], structure [8]–[10], and their quality [11, p.], [12]–[14], e.g., 

while there are also global competitions where scientists and researchers test their own algorithms in order to 

achieve better performance in the most important in silico areas of protein science [15]. 
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The area in protein science which attracts a lot of attention is prediction of protein’s structure and the analysis 

of its quality. This is important because in silico prediction allows us to save valuable resources in order to find 

targets sooner, which are then a starting point for further research [16]. 

There are currently two main methods of protein structure prediction: template-based and ab initio. The first 

one includes finding of the most similar protein to the target whose structure has already been solved, and then 

modeling the target based on the template [17], while the second one can incorporate many different techniques 

in order to predict protein’s structure from scratch [18]. Template-based prediction is generally more reliable 

and the most popular one, which is why this study focuses on protein templates, however, there are cases where 

ab initio is more appropriate [19], [20]. 

The aim of this research is to study the relationship between the basic protein features readily available from 

the PDB and the global quality of the protein template. 

2. Materials and methods 

2.1. Sample collection and retrieval of information  

This work has been done on the data consisting of solved protein structures from the PDB. The example of the 

structure visualization can be seen in Figure 1. This study has focused on X-ray crystallized structures of 

monomeric proteins deposited in the PDB, which resulted in the initial sample of 36,147 proteins. This number 

has decreased throughout the analysis due to the missing information from the PDB and due to the 

incompatibility of some proteins to the quality assessment (QA) methods. The final number of proteins analyzed 

is 35,710. 

 

Figure 1. PDB Structure Visualization Example [21] 

 

The primary experimental information was also retrieved from the PDB. The list of information is in the Table 

1. 

Table 1. Primary Experimental Information Retrieved from the PDB [22] 

Criteria Description 

Resolution Resolution of the protein in angstroms (Å; 1Å = 0.1nm) 

Residue Count The total number of residues in a protein model 

Release Date Date of the publishing of the structure to the PDB 

Secondary Structure The secondary sequence in DSSP code 

Protein MW Expressed in Daltons 

Ligand MW The molecular weight of ligand(s) in a protein model (Daltons) 

R Observed 
Represents the error between the observed and predicted diffraction patterns 

(when solving for the protein’s 3D structure) 

R value work 
Quality Measurement – represents the error between the observed and 

predicted diffraction pattern 



 PEN Vol. 9, No. 2, April 2021, pp.820-829 

822 

 

Since some of the information is not useable in its original format, additional information used in the study was 

computed from the primary information provided by the PDB. This information, together with the description 

behind the computation, is listed in the Table 2. 

Table 2. Secondary information from PDB on proteins in the sample 

Criteria Description 

Years Old 
Calculated in years based on the Release Date – the newest structures were set 

to be 0 years old 

Has ligands Status on the presence of ligands in the protein model: 1 – present, 0 – absent 

Total ligand MW Calculated by the addition of MW of all ligands present in the protein model 

Ligand/Protein MW 

Ratio 
Ratio calculated based on the percentage of ligand’s MW to the protein’s MW 

Percentage of 

Secondary Structure 
Percentage of alpha helices, beta sheets, and loops in protein’s structure 

R adjusted 
Contains the combinations of R values in cases where standard R value was 

not available at the PDB 

2.2. Quality assessment of proteins  

The list of different methods used for the QA is in the Table 3. Ramachandran – PROVE fall into the group of 

traditional methods, while QMEAN, DOPE, and VoroMQA are the methods of newer generation, which include 

the analysis based on the machine learning. All QA methods have been performed on all proteins from the 

database. 

Table 3. Quality assessment methods performed on proteins 

Criteria Measurement 

Ramachandran Percentage of outliers in an atom model [23] 

Energy Total energy of a model normalized for the residue count, using DFIRE server [24] 

Verify3D Percentage of residues above 0.2 threshold [25], [26] 

PROCHECK Percentage of satisfactory evaluations [27] 

ERRAT Percentage of nonrandom distribution of atoms [28] 

PROVE Percentage of buried outlier protein atoms [29] 

QMEAN Feature scale 0-1 [30] 

DOPE Real numbers [31] 

VoroMQA Real numbers [32] 

2.3. Statistical data analysis  

Upon the completion of the dataset, the analysis of the correlations between every protein feature and the QA 

methods has been performed. Threshold values have been found for protein features which separate the protein 

models to groups of different quality levels. The thresholds were defined based on the data distribution analysis, 

and the additional explanation for each of the value is stated the “Results” section. The differences in the quality 

of the resulting protein groups were compared using Mann-Whitney U test and the Cohen’s D test, for the mean 

and the effect size, respectively. Note: since different QA tools have different scales (positive vs negative is 

better), the final analysis of the effect size has been adjusted for the QA tools having negative score as better 

(these include R value, energy, Prove, and DOPE). 

The selected threshold values separating proteins into two groups are as follows: age – 30 years (group 1 

contains proteins of age 30 or more, group 2 less than 30), resolution – 3 Å (group 1 – 3 Å or more), length – 

700 amino acids (group 1 – 700 amino acids or more), ligand – presence of ligand (group 1 – no ligand), R 

value – 0.25 (group 1 – R value of 0.25 or more). Regarding the protein’s secondary structure, loops, alpha 

helices, and beta sheets were organized into three groups: group 1 with a target secondary structure between 0% 

and 20%, group 2 between 20% and 60%, and group 3 above 60%. Since two thresholds were taken, two 

separate analyses were made. The results of statistical analysis are shown in the Table 6 and Figure 2. 

Comparisons where no significant difference was found contain the value “FALSE”, while those where there 

was a significant difference (according to the Mann-Whitney U test) contain the Cohen’s D factor. 
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2.4. Machine learning analysis  

For the model building, the quality scores have been transformed into two categories: good – 1 and weak – 0, 

based on the supporting literature for the QA tools and based on the observation of the data distribution. The 

final dependent value has been created as a combination of all QA scores where 1 (good quality model) was 

given to templates which contain a 1 (good) quality level in at least 9 out of 10 individual QA scores. This 

resulted in 22,455 protein templates with a good quality level, and 13,255 protein templates with a weak quality 

level. 

The aim of the classification is not to develop a model which predicts protein quality class, but to analyze the 

feature importance from the best-performing model. The classification has been performed using 12 different 

machine learning algorithms from scikit learn library for Python [33], shown in Table 7, and Random Forest 

was chosen since it has yielded the best overall results. The model has been run 10 times and the average scores 

are reported, the testing size was chosen to be 0.2, the data was scaled using standard scaler from scikit learn, 

K-means cross validation has also been performed with the cv parameter set to 10 (using scikit learn library), 

and feature importance has been recorded. 

3. Results 

The following sections contain the results of this study, focusing first on descriptive statistics, then on statistical 

analysis, and ML analysis.  

3.1. Descriptive statistics 

The summary of descriptive statistics of features from the dataset is shown in Table 4, including the R value 

since it is readily available from the PDB. Table 5 summarizes descriptive statistics of QA done on the dataset. 

Table 4. Descriptive statistics of protein Features 

Protein Feature mean std min 25% 50% 75% max 

Years Old 8.88 6.66 0.00 3.28 7.50 13.10 42.72 

Resolution 1.91 0.48 0.48 1.60 1.88 2.20 7.00 

Has Ligands 0.88 0.33 0.00 1.00 1.00 1.00 1.00 

Ligand MW Total 398.73 348.31 0.00 117.48 346.20 582.51 4382.80 

Residue Count 309.88 180.21 20.00 177.00 284.00 369.00 2191.00 

Molecular Weight 34736 20302 2184 19876 32029 42051 247323 

Lig./Prot. MW Ratio 0.01 0.01 0.00 0.00 0.01 0.02 0.31 

Loops 0.44 0.08 0.04 0.39 0.45 0.49 0.95 

Alpha Helices 0.34 0.17 0.00 0.22 0.35 0.43 0.96 

Beta Sheets 0.22 0.13 0.00 0.14 0.20 0.30 0.82 

R Value 0.184 0.032 0.045 0.164 0.184 0.203 0.435 

Table 5. Descriptive statistics of protein quality assessments 

QA method mean std min 25% 50% 75% max 

Energy_st -2.08 2.27 -3.36 -2.37 -2.21 -2.04 301.56 

Ramachandran 99.53 0.99 72.12 99.40 99.78 100.00 100.00 

Verify3D 83.47 21.45 0.00 74.09 92.69 98.99 100.00 

Prove 1.48 1.32 0.00 0.70 1.10 1.80 90.60 

Errat 92.84 10.78 0.00 91.61 95.68 98.39 100.00 

Procheck 81.33 13.88 0.00 75.00 87.50 88.89 100.00 

Qmean 88.14 4.71 44.71 85.46 88.81 91.50 98.58 

DOPE -1.90 0.50 -4.93 -2.22 -1.91 -1.63 3.71 

VoroMQA 51.21 5.16 0.72 49.18 52.15 54.27 71.59 
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3.2. Statistical data analysis 

Results of statistical data analysis are shown in Table 6. Most features have been divided into two groups, 

resulting in a single comparison between their means and the effect size. Percentages of loops, helices, and 

sheets have been divided into three groups, resulting in two comparisons between the neighboring groups (cross-

comparison was not used). Loop1 refers to the comparison between proteins having 0%-20% loops (group 1) 

and 20%-60% loops (group 2). Loop 2 refers to the comparison between proteins having 60%+ loops (group 1) 

and 20%-60% loops (group 2). The same is applicable to helix and sheet cases. Comparisons which resulted in 

a p value higher than 0.05 have been marked with “FALSE”, representing a difference which isn’t significant. 

Table 6. Statistical data analysis results 

Feature R Energy Prove Dope Ramach. Verify3D Errat Procheck Qmean VoroMQA 

Age -0.02 -0.01 0.32 FALSE FALSE -0.12 -0.78 -1.43 FALSE -0.52 

Res. 1.64 0.72 2.97 1.83 -1.77 -0.62 -0.83 -1.06 -2.48 -0.93 

Length 0.40 0.23 0.85 0.78 -0.26 -0.12 -0.12 -0.69 -0.94 0.16 

Ligand 0.28 0.15 0.24 0.16 -0.29 FALSE -0.06 -0.02 FALSE -0.18 

Loop1 0.49 -0.16 0.22 -0.34 0.22 -0.66 0.48 0.50 FALSE -1.91 

Loop2 0.37 0.27 0.45 1.08 -0.92 -0.21 -0.71 -0.38 -0.64 -1.05 

Helix1 -0.26 0.04 -0.28 0.47 -0.05 -0.23 -0.53 0.06 0.42 0.05 

Helix2 0.14 -0.11 0.12 -0.57 0.18 -0.07 0.40 0.25 -0.15 -0.61 

Sheet1 0.21 -0.01 0.28 -0.34 -0.01 0.00 0.26 FALSE -0.43 -0.33 

Sheet2 -0.34 -0.15 -0.22 -0.19 FALSE 0.22 0.06 0.19 0.54 0.33 

R value 3.04 0.73 2.21 1.45 -1.53 -0.63 -0.71 -0.80 -1.89 -1.00 

 

Statistical data from the Table 6 has been combined for easier visualization in figure 2. Cases where group 2 

has better quality over group 1 are shown in blue, while the opposite cases are shown in pink/orange. The ranges 

for small, medium, and large effects (in absolute values) are 0.2-0.5, 0.5-0.8, and 0.8+, respectively. Grey color 

represents neutral comparisons, i.e. where Cohen’s d value is between 0.2 and -0.2, or where the difference was 

shown to be insignificant (p value > 0.05). 

 

Figure 2. Results of Mann-Whitney U test and Cohen’s D test 
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3.3. Machine learning analysis 

Different algorithms used on the dataset and their respective accuracies and F1 measures are shown in Table 7. 

The best-performing one, used for the feature importance analysis, is random forest, with the accuracy of the 

model for the classification of protein templates according to quality 78%, having K-fold cross validation scores 

in range between 77.2% and 78.7%, and the F-measure 83%. The accuracy represents the fraction of the 

correctly classified samples, i.e. the percentage of true positives and true negatives from the total number of 

samples. The coefficients of feature importance are shown in the Figure 3. R value is not included in this analysis 

since it contributes to the dependent variable, i.e. it is used as a QA variable. 

Table 7. ML algorithms used on the dataset [34] 

 Random 
Forest 

HGB KNN MLP GTB XGB 
Ada 

Boost 
SVM SGD Logistic 

Dec. 
Trees 

Naïve 
Bayes 

Accuracy 0.79 0.78 0.76 0.75 0.74 0.74 0.74 0.73 0.71 0.71 0.70 0.69 

F1 0.83 0.83 0.81 0.81 0.81 0.81 0.81 0.81 0.79 0.79 0.76 0.78 

 

 

 

Figure 3. Coefficients of features for Random Forest model 

 

4. Discussion 

Descriptive statistics represented in Tables 4 and 5 show the results for the whole dataset containing 35710 

proteins, their features and their QA scores. The mean age of protein models is 8.88, which is not unusual even 

though there are protein models with the age of 40 or more. This is due to the fact that there is an increasing 

number of models being published each year [35]. Overall, protein models have a good resolution, with 75% of 

them having 2.2 Å or less. The distribution of resolution from the sample used in this study differs to a certain 

extent from the total data at the PDB [36], which could be due to the fact that this study has focused only on 

monomeric proteins – they are smaller on average, and the size of the protein shows a weak correlation to the 

resolution. 88% of protein models have ligands and although ligands are generally a lot smaller than proteins, 

having mean MW of 399, while proteins have 34,736, the ligand/protein MW ratio goes to the 0.31, meaning 

that there are instances where ligands account for almost 25% of the total MW of the model. 

On average, loops comprise the highest percentage of proteins secondary structure (44%), followed by alpha 

helices (34%). Overall, beta sheets are the type of secondary structure with the lowest prevalence in proteins 

(22%). There are protein models which do not have alpha helices or beta sheets at all, or a very small percentage 

of loops (4%). As for the R value, most proteins have good scores, with 75% of them having the R value of .203 

or less. There are, however, cases of 0.4 or more. 
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Regarding the QA scores, there are some noticeable trends. Namely, Ramachandran plot shows the highest 

values (out of the scores which go from 0 to 100), having the mean value of 99.53. This is consistent with the 

analysis from the official PDB’s system for Validation – OneDep [37], where the mean value for residues in 

favored region is >99% [38].  This indicates that most of the protein models are optimized for the Ramachandran 

plot assessment which might not be the most reliable QA method. 

Verify3D, Errat, Procheck, Qmean, and VoroMQA show more strict criteria when scoring models, allowing the 

user to better separate the models according to the quality and analyze the results. Prove and DOPE have mean 

quality scores of 1.48 and -1.9, respectively, since their results generally do not go from 0-100. It is noticeable 

that there are proteins who have scored 90 or more for Prove (higher number indicates a lower quality protein 

in this case), but these are rare cases since 75% of proteins have the score of 1.8 or less. 

Regarding the total free energy, since it has been standardized for the number of residues in a protein, the 

average is -2.08, and most of the proteins (75%) have the free energy per residue less than -2, but there are cases 

of highly disordered proteins, whose energy per residue is 300 or larger. Other studies have also shown that 

intrinsically disordered proteins have higher free energy values [39]. 

Table 6 and Figure 2 show the results of statistical analysis between the proteins divided into different groups, 

based on the threshold value selected for a target protein feature. The highest effect (Cohen’s D) across all QA 

tools has Resolution, followed by R value, loop content, and the length of the protein. More specifically, protein 

models having a resolution of less than 3 Å, or R value less than 0.25 show both significantly (p value < 0.05) 

and greatly (Cohen’s d > 0.8) better quality scores, when compared to the protein models having resolution > 3 

Å or R value > 0.25. 

Interestingly, proteins having between 20% and 60% loops also show significantly (p value < 0.05) and 

moderately (Cohen’s d > 0.5 in 5 out of 10 QAs) better quality scores, when compared with proteins having 

more than 60% loops. Length of the protein also shows a correlation to the quality level, since 7/10 QA tools 

have shown that proteins shorter than 700 amino acids have higher quality (Cohen’s d > 0.2, or in some instances 

> 0.8). 

Age of the protein model shows an effect in only 4 out 10 QA tools, while presence of the Ligand seems to be 

the most neutral, having 7 out of 10 QA tools either showing no significant difference or a difference with a 

small Cohen’s d (between 0.2 and -0.2). Other protein features seem to be inconclusive, with some QA tools 

showing the opposite effect, with the exception of Sheet2, where proteins with beta sheet percentage between 

20% and 60% show lower quality scores, when compared to those having more than 60% beta sheets, across 5 

out of 10 QA tools (other 5 either show low or insignificant difference). 

Table 7 shows the accuracies and F1 measures of all ML algorithms used. While random forest was the best, 

HGB had a very close performance, with other ML algorithms showing a gradual decline. Figure 3 shows the 

results of the feature importance in machine learning analysis. When analyzing all of the features concurrently, 

using Random Forest algorithm from the scikit learn library in Python, most of the features show similar 

importance level (between 0.081 and 0.124), with the exception of Resolution, having the highest feature 

importance score (0.217), and the presence of ligands having the lowest score (0.004). It is worth noting that 

the presence of ligands also showed the lowest effect in previous analysis (Figure 2). 

The purpose of this study was not the development of the model for the prediction of protein’s quality level, 

since it focuses only on the correlation between the basic/primary protein features and quality. Additional 

features, which are not in the scope of this study, play an important role in the determination of the protein 

quality level. E.g., atomic interactions can be used for the assessment of protein structure [28], [32], or various 

others which might be combined in a single QA tool [40]. However, it is interesting to note that the Random 

Forrest algorithm still manages to get 78% accuracy in the classification of protein models to those of good or 

poor quality, according to the consensus of ten different QA tools, with the Resolution of protein models having 

the highest impact, other features having similar importance between them, while the presence of ligands 

virtually no impact on the global quality of protein’s structure. 

5. Conclusion 

Since protein structure prediction and quality assessment is important for various applications, it is in the focus 

of today’s research. Different features of templates used in the prediction show a correlation to the quality levels 

across different QA tools. Resolution of the protein models shows the highest positive correlation with the 

quality of the model using statistical analysis, followed by R value and loop content. Out of all machine learning 

algorithms used, random forest shows the highest classification accuracy and F1 measure of models’ quality 



 PEN Vol. 9, No. 2, April 2021, pp.820-829 

827 

level, and it has also used resolution as the protein feature of greatest importance. Further analysis could show 

us the correlations with the predicted protein structures, as well as the importance of protein’s local features on 

the quality level. 

Abbreviations and acronyms  

NMR - nuclear magnetic resonance; cryo-EM - cryogenic electron microscopy, PDB - Protein Data Bank, QA 

- Quality Assessment, HGB – histogram gradient boosting, KNN – K-nearest neighbors, MLP – multi-layer 

perceptron, GTB – gradient tree boosting, XGB – extreme gradient boosting, SVM – support-vector machine, 

SGD – stochastic gradient descent. 
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