167 research outputs found

    Secondary Science with ROTSE Data

    Full text link
    The ROTSE optical GRB follow‐up instrument offers an excellent possibility for a secondary science with the data obtained within the sky monitoring. We present and discuss the results of a project of analysing two selected ROTSE monitoring fields with the goal to study the long‐term behaviour of the objects located inside. The method developed and tested can be applied in a general way to study light changes of astrophysical objects of various types within the limiting magnitude of the ROTSE device. © 2003 American Institute of PhysicsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87935/2/544_1.pd

    Hot gaseous atmospheres of rotating galaxies observed with XMM-Newton

    Get PDF
    X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally-supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.Comment: 12 pages, 11 figures, submitted to MNRA

    Search for correlations between BATSE Gamma-Ray Bursts and Supernovae

    Get PDF
    We report on complex statistical research of space-time correlated supernovae and CGRO-BATSE gamma-ray bursts. We show that there exists a significantly higher abundanceof core-collapsesup ernovaeamong thecorre lated supernovae, but the subset of all correlated objects does not seem to be physically different from the whole set

    The correlated optical and radio variability of BL Lacertae. WEBT data analysis 1994-2005

    Full text link
    Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the study of this huge dataset has been the search for correlations between the optical and radio flux variations, and for possible periodicities in the light curves. The analysis of the data assembled during the first four campaigns (comprising also archival data to cover the period 1968-2003) revealed a fair optical-radio correlation in 1994-2003, with a delay of the hard radio events of ~100 days. Moreover, various statistical methods suggested the existence of a radio periodicity of ~8 years. In 2004 the WEBT started a new campaign to extend the dataset to the most recent observing seasons, in order to possibly confirm and better understand the previous results. In this campaign we have collected and assembled about 11000 new optical observations from twenty telescopes, plus near-IR and radio data at various frequencies. Here, we perform a correlation analysis on the long-term R-band and radio light curves. In general, we confirm the ~100-day delay of the hard radio events with respect to the optical ones, even if longer (~200-300 days) time lags are also found in particular periods. The radio quasi-periodicity is confirmed too, but the "period" seems to progressively lengthen from 7.4 to 9.3 years in the last three cycles. The optical and radio behaviour in the last forty years suggests a scenario where geometric effects play a major role. In particular, the alternation of enhanced and suppressed optical activity (accompanied by hard and soft radio events, respectively) canComment: 6 pages, 4 figure

    The unprecedented optical outburst of the quasar 3C 454.3. The WEBT campaign of 2004-2005

    Get PDF
    The radio quasar 3C 454.3 underwent an exceptional optical outburst lasting more than 1 year and culminating in spring 2005. The maximum brightness detected was R = 12.0, which represents the most luminous quasar state thus far observed (M_B ~ -31.4). In order to follow the emission behaviour of the source in detail, a large multiwavelength campaign was organized by the Whole Earth Blazar Telescope (WEBT). Continuous optical, near-IR and radio monitoring was performed in several bands. ToO pointings by the Chandra and INTEGRAL satellites provided additional information at high energies in May 2005. The historical radio and optical light curves show different behaviours. Until about 2001.0 only moderate variability was present in the optical regime, while prominent and long-lasting radio outbursts were visible at the various radio frequencies, with higher-frequency variations preceding the lower-frequency ones. After that date, the optical activity increased and the radio flux is less variable. This suggests that the optical and radio emissions come from two separate and misaligned jet regions, with the inner optical one acquiring a smaller viewing angle during the 2004-2005 outburst. Moreover, the colour-index behaviour (generally redder-when-brighter) during the outburst suggests the presence of a luminous accretion disc. A huge mm outburst followed the optical one, peaking in June-July 2005. The high-frequency (37-43 GHz) radio flux started to increase in early 2005 and reached a maximum at the end of our observing period (end of September 2005). VLBA observations at 43 GHz during the summer confirm theComment: 7 pages, 4 figures, to be published in A&

    A new activity phase of the blazar 3C 454.3. Multifrequency observations by the WEBT and XMM-Newton in 2007-2008

    Full text link
    We present and analyse the WEBT multifrequency observations of 3C 454.3 in the 2007-2008 observing season, including XMM-Newton observations and near-IR spectroscopic monitoring, and compare the recent emission behaviour with the past one. In the optical band we observed a multi-peak outburst in July-August 2007, and other faster events in November 2007 - February 2008. During these outburst phases, several episodes of intranight variability were detected. A mm outburst was observed starting from mid 2007, whose rising phase was contemporaneous to the optical brightening. A slower flux increase also affected the higher radio frequencies, the flux enhancement disappearing below 8 GHz. The analysis of the optical-radio correlation and time delays, as well as the behaviour of the mm light curve, confirm our previous predictions, suggesting that changes in the jet orientation likely occurred in the last few years. The historical multiwavelength behaviour indicates that a significant variation in the viewing angle may have happened around year 2000. Colour analysis reveals a complex spectral behaviour, which is due to the interplay of different emission components. All the near-IR spectra show a prominent Halpha emission line, whose flux appears nearly constant. The analysis of the XMM-Newton data indicates a correlation between the UV excess and the soft-X-ray excess, which may represent the head and the tail of the big blue bump, respectively. The X-ray flux correlates with the optical flux, suggesting that in the inverse-Compton process either the seed photons are synchrotron photons at IR-optical frequencies or the relativistic electrons are those that produce the optical synchrotron emission. The X-ray radiation would thus be produced in the jet region from where the IR-optical emission comes.Comment: 10 pages, 12 figures (7 included in the text, 5 in GIF format), accepted for publication in A&

    Notions of agency in early literacy classrooms: assemblages and productive intersections

    Get PDF
    Agency and its role in the early literacy classroom has long been a topic for debate. While sociocultural accounts often portray the child as a cultural agent who negotiates their own participation in classroom culture and literacy learning, more recent framings draw attention from the individual subject, instead seeing agency as dispersed across people and materials. In this article I draw on my experiences of following children as they followed their interests in an early literacy classroom, drawing on the concepts of assemblage and people yet to come, as defined by Deleuze and Guattari and Spinoza’s common notion. I provide one illustrative account of moment-by-moment activity and suggest that in education settings it is useful to see activity as a direct and ongoing interplay of three dimensions: children’s moving bodies; the classroom; and its materials. I propose that children’s ongoing movements create possibilities for ‘doing’ and ‘being’ that flow across and between children. I argue that thinking with assemblage can draw attention to both the potentiality and the power dynamics inherent in the ongoing present and also counter preconceived notions of individual child agency and linear trajectories of literacy development, and the inequalities this these concepts can perpetuate within early education settings
    • 

    corecore