44 research outputs found

    Energetic stability of absorbed H in Pd and Pt nanoparticles in a more realistic environment

    Full text link
    Absorbed hydrogen can dramatically increase hydrogenation activity of Pd nanoparticles and was predicted to do so also for Pt. This calls for investigations of the energetic stability of absorbed H in Pd and Pt using nanoparticle models as realistic as possible, i.e., (i) sufficiently large, (ii) supported, and (iii) precovered by hydrogen. Herein, hydrogen absorption is studied in MgO(100)-supported 1.6 nm large Pd and Pt nanoparticles with surfaces saturated by hydrogen. The effect of surface H on the stability of absorbed H is found to be significant and to exceed the effect of the support. H absorption is calculated to be endothermic in Pt, energy neutral in Pd(111) and bare Pd nanoparticles, and exothermic in H-covered Pd nanoparticles. Hence, we identify the abundance of surface H and the nanostructuring of Pd as prerequisites for facile absorption of hydrogen in Pd and for the concomitantly altered catalytic activity

    O2 dissociation on M@Pt core-shell particles for 3d, 4d and 5d transition metals

    Get PDF
    Density functional theory calculations are performed to investigate oxygen dissociation on 38-atom truncated octahedron platinum-based particles. This study progresses our previous work (Jennings et al. Nanoscale, 2014, 6, 1153), where it was shown that flexibility of the outer Pt shell played a crucial role in facilitating fast oxygen dissociation. In this study, the effect of forming M@Pt (M core, Pt shell) particles for a range of metal cores (M = 3d, 4d, and 5d transition metals) is considered, with respect to O2 dissociation on the Pt(111) facets. We show that forming M@Pt particles with late transition metal cores results in favorable shell flexibility for very low O2 dissociation barriers. Conversely, alloying with early transition metals results in a more rigid Pt shell because of dominant M-Pt interactions, which prevent lowering of the dissociation barriers

    Can the state of platinum species be unambiguously determined by the stretching frequency of adsorbed CO probe molecule?

    Get PDF
    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt0, with C-O vibrational frequencies in the region 2018-2077 cm−1, suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm−1. This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches

    Chemical ordering in Pt-Au, Pt-Ag and Pt-Cu nanoparticles from density functional calculations using a topological approach

    Full text link
    Bimetallic alloys are actively investigated as promising new materials for catalytic and other energy-related applications. However, the stable arrangements of the two metals in prevailing nanostructured systems, which define their structure and surface reactivity, are seldom addressed. The equilibrium chemical orderings of bimetallic nanoparticles are usually different from those in the corresponding bulk phases and hard to control experimentally, which hampers assessment of the relations between composition, structure, and reactivity. Herewith, we study mixtures of platinum an essential metal in catalysis alloyed with coinage metals gold, silver, and copper. These systems are interesting, for instance, for reducing the costly Pt content and designing improved multifunctional catalysts, but the chemical orderings in such mixtures at the nanoscale are still debated. We therefore explore chemical orderings and properties of Pt-containing nanoalloys by means of a topological method based on density functional calculations. We determine the lowest-energy chemical orderings in 1.4 to 4.4 nm large Pt-Au, Pt-Ag and Pt-Cu particles with different contents of metals. Chemical ordering, bonding, and charge distribution in the nanoparticles are analyzed, identifying how peculiar structural motifs relevant for catalysis and sensing applications, such as monometallic skins and surface single-atom sites, emerge. We compare these results with previous data for the corresponding Pd-based particles, identifying trends in chemical ordering, deepening understanding of the behaviour of catalytically relevant bimetallic compositions, and establishing appropriate models for studying the bimetallic nanoalloys

    Subsurface carbon: a general feature of noble metals

    Full text link
    Carbon moieties on late transition metals are regarded as poisoning agents in heterogeneous catalysis. Recent studies show the promoting catalytic role of subsurface C atoms in Pd surfaces and their existence in Ni and Pt surfaces. Here energetic and kinetic evidence obtained by accurate simulations on surface and nanoparticle models shows that such subsurface C species are a general issue to consider even in coinage noble-metal systems. Subsurface C is the most stable situation in densely packed (111) surfaces of Cu and Ag, with sinking barriers low enough to be overcome at catalytic working temperatures. Low-coordinated sites at nanoparticle edges and corners further stabilize them, even in Au, with negligible subsurface sinking barriers. The malleability of low-coordinated sites is key in the subsurface C accommodation. The incorporation of C species decreases the electron density of the surrounding metal atoms, thus affecting their chemical and catalytic activity

    A DFT study of oxygen dissociation on platinum based nanoparticles

    Get PDF
    A DFT investigation of O2 activation on pure Pt and Ti@Pt core–shell nanoparticles and the importance of shell flexibility for fast reaction kinetics.</p

    Charting the Atomic C Interaction with Transition Metal Surfaces

    Full text link
    Carbon interaction with transition metal (TM) surfaces is a relevant topic in heterogeneous catalysis, either for its poisoning capability, for the recently attributed promoter role when incorporated in the subsurface, or for the formation of early TM carbides, which are increasingly used in catalysis. Herein, we present a high-throughput systematic study, adjoining thermodynamic plus kinetic evidence obtained by extensive density functional calculations on surface models (324 diffusion barriers located on 81 TM surfaces in total), which provides a navigation map of these interactions in a holistic fashion. Correlation between previously proposed electronic descriptors and ad/absorption energies has been tested, with the d-band center being found the most suitable one, although machine learning protocols also underscore the importance of the surface energy and the site coordination number. Descriptors have also been tested for diffusion barriers, with ad/absorption energies and the difference in energy between minima being the most appropriate ones. Furthermore, multivariable, polynomial, and random forest regressions show that both thermodynamic and kinetic data are better described when using a combination of different descriptors. Therefore, looking for a single perfect descriptor may not be the best quest, while combining different ones may be a better path to follow

    Structural transformations and adsorption properties of PtNi nanoalloy thin film electrocatalysts prepared by magnetron co-sputtering

    Get PDF
    This is the final peer-reviewed manuscript accepted for publication in Electrochimica Acta Citation of the published version is: Electrochimica Acta 251, 427–441 (2017

    Energetic stability of absorbed H in Pd and Pt nanoparticles in a more realistic environment 

    No full text
    Absorbed hydrogen can dramatically increase hydrogenation activity of Pd nanoparticles and was predicted to do so also for Pt. This calls for investigations of the energetic stability of absorbed H in Pd and Pt using nanoparticle models as realistic as possible, i.e., (i) sufficiently large, (ii) supported, and (iii) precovered by hydrogen. Herein, hydrogen absorption is studied in MgO(100)-supported 1.6 nm large Pd and Pt nanoparticles with surfaces saturated by hydrogen. The effect of surface H on the stability of absorbed H is found to be significant and to exceed the effect of the support. H absorption is calculated to be endothermic in Pt, energy neutral in Pd(111) and bare Pd nanoparticles, and exothermic in H-covered Pd nanoparticles. Hence, we identify the abundance of surface H and the nanostructuring of Pd as prerequisites for facile absorption of hydrogen in Pd and for the concomitantly altered catalytic activity
    corecore