6 research outputs found
The role of mirroring and mentalizing networks in mediating action intentions in autism
Abstract Background The ability to interpret agentsâ intent from their actions is a vital skill in successful social interaction. However, individuals with autism spectrum disorders (ASD) have been found to have difficulty in attributing intentions to others. The present study investigated the neural mechanisms of inferring intentions from actions in individuals with ASD. Methods Functional magnetic resonance imaging (fMRI) data were acquired from 21 high-functioning young adults with ASD and 22 typically developing (TD) control participants, while making judgments about the means (how an action is performed) and intention (why an action is performed) of a modelâs actions. Results Across both groups of participants, the middle and superior temporal cortex, extending to temporoparietal junction, and posterior cingulate cortex, responded significantly to inferring the intent of an action, while inferior parietal lobule and occipital cortices were active for judgments about the means of an action. Participants with ASD had significantly reduced activation in calcarine sulcus and significantly increased activation in left inferior frontal gyrus, compared to TD peers, while attending to the intentions of actions. Also, ASD participants had weaker functional connectivity between frontal and posterior temporal regions while processing intentions. Conclusions These results suggest that processing actions and intentions may not be mutually exclusive, with reliance on mirroring and mentalizing mechanisms mediating action understanding. Overall, inferring information about othersâ actions involves activation of the mirror neuron system and theory-of-mind regions, and this activation (and the synchrony between activated brain regions) appears altered in young adults with ASD
CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting
Nuclear detection, segmentation and morphometric profiling are essential in
helping us further understand the relationship between histology and patient
outcome. To drive innovation in this area, we setup a community-wide challenge
using the largest available dataset of its kind to assess nuclear segmentation
and cellular composition. Our challenge, named CoNIC, stimulated the
development of reproducible algorithms for cellular recognition with real-time
result inspection on public leaderboards. We conducted an extensive
post-challenge analysis based on the top-performing models using 1,658
whole-slide images of colon tissue. With around 700 million detected nuclei per
model, associated features were used for dysplasia grading and survival
analysis, where we demonstrated that the challenge's improvement over the
previous state-of-the-art led to significant boosts in downstream performance.
Our findings also suggest that eosinophils and neutrophils play an important
role in the tumour microevironment. We release challenge models and WSI-level
results to foster the development of further methods for biomarker discovery
Ictogenesis during sEEG evaluation after acute intracranial hemorrhage
We present a unique case of a patient with drug-resistant focal epilepsy undergoing stereoelectroencephalography (sEEG) who developed an acute posttraumatic intracranial hemorrhage during monitoring, first detected by changes on sEEG. Our case demonstrates the evolution of electrographic changes at the time of initial hemorrhage to the development of ictal activity. We conducted spectral analysis of the sEEG data to illustrate the transition from an interictal to ictal state. Initially, delta power increased in the region of acute hemorrhage, followed by sustained regional reduction in frequency variability. Our findings provide further information on the development of epileptiform activity in acute hemorrhage. Keywords: Epileptogenesis, Traumatic brain hemorrhage, Stereo-EE
Greater socioenvironmental risk factors and higher chronic pain stage are associated with thinner bilateral temporal lobes
Abstract Introduction: Previous research indicates ethnic/race group differences in pain and neurodegenerative diseases. Accounting for socioenvironmental factors reduces ethnic/race group differences in clinical and experimental pain. In the current study sample, we previously reported that in individuals with knee pain, ethnic/race group differences were observed in bilateral temporal lobe thickness, areas of the brain associated with risk for Alzheimer's disease, and related dementias. The purpose of the study was to determine if socioenvironmental factors reduce or account for previously observed ethnic/race group differences and explore if a combined effect of socioenvironmental risk and chronic pain severity on temporal lobe cortices is evident. Methods: Consistent with the prior study, the sample was comprised of 147 adults (95 women, 52 men), 45â85 years of age, who selfâidentified as nonâHispanic Black (n = 72) and nonâHispanic White (n = 75), with knee pain with/at risk for osteoarthritis. Measures included demographics, health history, pain questionnaires, cognitive screening, body mass index, individualâ and communityâlevel socioenvironmental factors (education, income, household size, marital and insurance status, and area deprivation index), and brain imaging. We computed a summative socioenvironmental risk index. Results: Regression analyses showed that with the inclusion of socioenvironmental factors, the model was significant (p < .001), and sociodemographic (ethnic/race) group differences were not significant (p = .118). Additionally, findings revealed an additive stress load pattern indicating thinner temporal lobe cortices with greater socioenvironmental risk and chronic pain severity (p = .048). Implications: Although individual socioenvironmental factors were not independent predictors, when collectively combined in models, ethnic/race group differences in bilateral temporal lobe structures were not replicated. Further, combined socioenvironmental risk factors and higher chronic pain severity were associated with thinner bilateral temporal lobes