3 research outputs found

    Climate, host and geography shape insect and fungal communities of trees.

    Get PDF
    Non-native pests, climate change, and their interactions are likely to alter relationships between trees and tree-associated organisms with consequences for forest health. To understand and predict such changes, factors structuring tree-associated communities need to be determined. Here, we analysed the data consisting of records of insects and fungi collected from dormant twigs from 155 tree species at 51 botanical gardens or arboreta in 32 countries. Generalized dissimilarity models revealed similar relative importance of studied climatic, host-related and geographic factors on differences in tree-associated communities. Mean annual temperature, phylogenetic distance between hosts and geographic distance between locations were the major drivers of dissimilarities. The increasing importance of high temperatures on differences in studied communities indicate that climate change could affect tree-associated organisms directly and indirectly through host range shifts. Insect and fungal communities were more similar between closely related vs. distant hosts suggesting that host range shifts may facilitate the emergence of new pests. Moreover, dissimilarities among tree-associated communities increased with geographic distance indicating that human-mediated transport may serve as a pathway of the introductions of new pests. The results of this study highlight the need to limit the establishment of tree pests and increase the resilience of forest ecosystems to changes in climate

    MALDI-TOF MS as a method for rapid identification of Phytophthora de Bary, 1876

    No full text
    The number of described species of the oomycete genus Phytophthora is growing rapidly, highlighting the need for low-cost, rapid tools for species identification. Here, a collection of 24 Phytophthora species (42 samples) from natural as well as anthropogenic habitats were genetically identified using the internal transcribed spacer (ITS) and cytochrome c oxidase subunit I (COI) regions. Because genetic identification is time consuming, we have created a complementary method based on by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Both methods were compared and hypothesis that the MALDI-TOF MS method can be a fast and reliable method for the identification of oomycetes was confirmed. Over 3500 mass spectra were acquired, manually reviewed for quality control, and consolidated into a single reference library using the Bruker MALDI Biotyper platform. Finally, a database containing 144 main spectra (MSPs) was created and published in repository. The method presented in this study will facilitate the use of MALDI-TOF MS as a complement to existing approaches for fast, reliable identification of Phytophthora isolates
    corecore