1,867 research outputs found
Implications of Privacy Needs and Interpersonal Distancing Mechanisms for Space Station Design
The literature on privacy needs, personal space, interpersonal distancing, and crowding is reveiwed with special reference to spaceflight and spaceflight analogous conditions. A quantitative model is proposed for understanding privacy, interpersonal distancing, and performance. The implications for space station design is described
Implications of privacy needs and interpersonal distancing mechanisms for space station design
Privacy needs, or the need of people to regulate their degree of contact with one another, and interpersonal distancing mechanisms, which serve to satisfy these needs, are common in all cultures. Isolation, confinement, and other conditions accociated with space flight may at once accentuate privacy needs and limit the availability of certain common interpersonal contact. Loneliness occurs when people have less contact with one another than they desire. Crowding occurs when people have more contact with one another than they desire. Crowding, which is considered the greater threat to members of isolated and confined groups, can contribute to stress, a low quality of life, and poor performance. Drawing on the general literature on privacy, personal space, and interpersonal distancing, and on specialized literature on life aboard spacecraft and in spacecraft-analogous environments, a quantitative model for understanding privacy, interpersonal distancing, loneliness, and crowding was developed and the practical implications of this model for space station design were traced
A Variant in a MicroRNA complementary site in the 3' UTR of the KIT oncogene increases risk of acral melanoma.
MicroRNAs (miRNAs) are small ∼22nt single stranded RNAs that negatively regulate protein expression by binding to partially complementary sequences in the 3' untranslated region (3' UTRs) of target gene messenger RNAs (mRNA). Recently, mutations have been identified in both miRNAs and target genes that disrupt regulatory relationships, contribute to oncogenesis and serve as biomarkers for cancer risk. KIT, an established oncogene with a multifaceted role in melanogenesis and melanoma pathogenesis, has recently been shown to be upregulated in some melanomas, and is also a target of the miRNA miR-221. Here, we describe a genetic variant in the 3' UTR of the KIT oncogene that correlates with a greater than fourfold increased risk of acral melanoma. This KIT variant results in a mismatch in the seed region of a miR-221 complementary site and reporter data suggests that this mismatch can result in increased expression of the KIT oncogene. Consistent with the hypothesis that this is a functional variant, KIT mRNA and protein levels are both increased in the majority of samples harboring the KIT variant. This work identifies a novel genetic marker for increased heritable risk of melanoma
A new calibrated sunspot group series since 1749: statistics of active day fractions
Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximated by a linear regression or proportionality. We emphasize that corrections based on a linear proportionality between annually averaged data lead to serious biases and distortions of the data. The correction matrices are applied to the original sunspot group records for each day, and finally the composite corrected series is produced for the period since 1748. The corrected series displays secular minima around 1800 (Dalton minimum) and 1900 (Gleissberg minimum), as well as the Modern grand maximum of activity in the second half of the 20th century. The uniqueness of the grand maximum is confirmed for the last 250 years. It is shown that the adoption of a linear relationship between the data of Wolf and Wolfer results in grossly inflated group numbers in the 18th and 19th centuries in some reconstructions
Records in a changing world
In the context of this paper, a record is an entry in a sequence of random
variables (RV's) that is larger or smaller than all previous entries. After a
brief review of the classic theory of records, which is largely restricted to
sequences of independent and identically distributed (i.i.d.) RV's, new results
for sequences of independent RV's with distributions that broaden or sharpen
with time are presented. In particular, we show that when the width of the
distribution grows as a power law in time , the mean number of records is
asymptotically of order for distributions with a power law tail (the
\textit{Fr\'echet class} of extremal value statistics), of order
for distributions of exponential type (\textit{Gumbel class}), and of order
for distributions of bounded support (\textit{Weibull class}),
where the exponent describes the behaviour of the distribution at the
upper (or lower) boundary. Simulations are presented which indicate that, in
contrast to the i.i.d. case, the sequence of record breaking events is
correlated in such a way that the variance of the number of records is
asymptotically smaller than the mean.Comment: 12 pages, 2 figure
A comparison of walk-in counselling and the wait list model for delivering counselling services
Background: Walk-in counselling has been used to reduce wait times but there are few controlled studies to compare outcomes between walk-in and the traditional model of service delivery.
Aims: To compare change in psychological distress by clients receiving services from two models of service delivery, a walk-in counselling model and a traditional counselling model involving a wait list
Method: Mixed methods sequential explanatory design including quantitative comparison of groups with one pre-test and two follow ups, and qualitative analysis of interviews with a subsample. 524 participants 16 years and older were recruited from two Family Counselling Agencies; the General Health Questionnaire assessed change in psychological distress; prior use of other mental health and instrumental services was also reported.
Results: Hierarchical linear modelling revealed clients of the walk-in model improved faster and were less distressed at the 4-week follow-up compared to the traditional service delivery model. At the 10-week follow-up, both groups had improved and were similar. Participants receiving instrumental services prior to baseline improved more slowly. Qualitative interviews confirmed participants valued the accessibility of the walk-in model.
Conclusions: This study improves methodologically on previous studies of walk-in counselling, an approach to service delivery that is not conducive to randomized controlled trials
Paramagnetic reentrant effect in high purity mesoscopic AgNb proximity structures
We discuss the magnetic response of clean Ag coated Nb proximity cylinders in
the temperature range 150 \mu K < T < 9 K. In the mesoscopic temperature
regime, the normal metal-superconductor system shows the yet unexplained
paramagnetic reentrant effect, discovered some years ago [P. Visani, A. C.
Mota, and A. Pollini, Phys. Rev. Lett. 65, 1514 (1990)], superimposing on full
Meissner screening. The logarithmic slope of the reentrant paramagnetic
susceptibility chi_para(T) \propto \exp(-L/\xi_N) is limited by the condition
\xi_N=n L, with \xi_N=\hbar v_F/2 \pi k_B T, the thermal coherence length and
n=1,2,4. In wires with perimeters L=72 \mu m and L=130 \mu m, we observe
integer multiples n=1,2,4. At the lowest temperatures, \chi_para compensates
the diamagnetic susceptibility of the \textit{whole} AgNb structure.Comment: 4 pages, 4 figures (color
Measuring kinetic coefficients by molecular dynamics simulation of zone melting
Molecular dynamics simulations are performed to measure the kinetic
coefficient at the solid-liquid interface in pure gold. Results are obtained
for the (111), (100) and (110) orientations. Both Au(100) and Au(110) are in
reasonable agreement with the law proposed for collision-limited growth. For
Au(111), stacking fault domains form, as first reported by Burke, Broughton and
Gilmer [J. Chem. Phys. {\bf 89}, 1030 (1988)]. The consequence on the kinetics
of this interface is dramatic: the measured kinetic coefficient is three times
smaller than that predicted by collision-limited growth. Finally,
crystallization and melting are found to be always asymmetrical but here again
the effect is much more pronounced for the (111) orientation.Comment: 8 pages, 9 figures (for fig. 8 : [email protected]). Accepted for
publication in Phys. Rev.
Nucleation and Bulk Crystallization in Binary Phase Field Theory
We present a phase field theory for binary crystal nucleation. In the
one-component limit, quantitative agreement is achieved with computer
simulations (Lennard-Jones system) and experiments (ice-water system) using
model parameters evaluated from the free energy and thickness of the interface.
The critical undercoolings predicted for Cu-Ni alloys accord with the
measurements, and indicate homogeneous nucleation. The Kolmogorov exponents
deduced for dendritic solidification and for "soft-impingement" of particles
via diffusion fields are consistent with experiment.Comment: 4 pages, 4 figures, accepted to PR
Superconducting proximity effect in a mesoscopic ferromagnetic wire
We present an experimental study of the transport properties of a
ferromagnetic metallic wire (Co) in metallic contact with a superconductor
(Al). As the temperature is decreased below the Al superconducting transition,
the Co resistance exhibits a significant dependence on both temperature and
voltage. The differential resistance data show that the decay length for the
proximity effect is much larger than we would simply expect from the exchange
field of the ferromagnet.Comment: 4 pages, 6 included epsf figures, published version with small
change
- …