307 research outputs found

    The automatic validation tool for PDDL2.1

    Get PDF
    The 3rd International Planning Competition [1] was a great success and a cornerstone to this success was the initial definition of a semantics for the language used in the competition, PDDL2.1. This created a general understanding of the semantics of the domains defined using this language and therefore a general understanding of what constitutes a valid plan. With this consensus on what a valid plan is it was possible to implement an automatic plan validator, VAL. This tool conveys what is a valid plan in PDDL2.1 to anyone developing a planner using this language, as well as providing extra information in a L ATEX report featuring graphs of changing numerical values and a Gantt chart (see figure 2). Actions With Continuous Effects A numerical quantity that can be changed, a function in PDDL, is called a primitive numerical expression (PNE). These PNEs can have continuous change initiated with changes made to the values of their (time) derivatives by durative actions. The effect starts at the beginning of the durative action and ends at the end of the durative action. The introduction of continuous change creates two further complications to the discrete temporal model: 1) Continuous changes can interact with one another, and 2) Invariant conditions may depend on values that are continuously changing. The key extension to the discrete temporal model is that interactin

    Validating plans with exogenous events

    Get PDF
    We are concerned with the problem of deciding the validity of a complex plan involving interacting continuous activity. In these situations there is a need to model and reason about the continuous processes and events that arise as a consequence of the behaviour of the physical world in which the plan is expected to execute. In this paper we describe how events, which occur as the outcome of uncontrolled physical processes, can be taken into account in determining whether a plan is valid with respect to the domain model. We do not consider plan generation issues in this paper but focus instead on issues in domain modelling and plan validation

    The Dynamics of Collaboration Networks and the History of General Relativity, 1925–1970

    Get PDF

    VAL : automatic plan validation, continuous effects and mixed initiative planning using PDDL

    Get PDF
    This paper describes aspects of our plan validation tool, VAL. The tool was initially developed to support the 3rd International Planning Competition, but has subsequently been extended in order to exploit its capabilities in plan validation and development. In particular, the tool has been extended to include advanced features of PDDL2.1 which have proved important in mixed-initiative planning in a space operations project. Amongst these features, treatment of continuous effects is the most significant, with important effects on the semantic interpretation of plans. The tool has also been extended to keep abreast of developments in PDDL, providing critical support to participants and organisers of the 4th IPC

    Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter

    Full text link
    This paper investigates the state estimation of a high-fidelity spatially resolved thermal- electrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional model. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the pseudo-2D model is then used in combination with an extended Kalman filter algorithm for differential-algebraic equations to estimate the states of the model. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1 % in less than 200 s despite a 30 % error on battery initial state-of-charge and additive measurement noise with 10 mV and 0.5 K standard deviations.Comment: Submitted to the Journal of Power Source

    Identifiability of generalised Randles circuit models

    Full text link
    The Randles circuit (including a parallel resistor and capacitor in series with another resistor) and its generalised topology have widely been employed in electrochemical energy storage systems such as batteries, fuel cells and supercapacitors, also in biomedical engineering, for example, to model the electrode-tissue interface in electroencephalography and baroreceptor dynamics. This paper studies identifiability of generalised Randles circuit models, that is, whether the model parameters can be estimated uniquely from the input-output data. It is shown that generalised Randles circuit models are structurally locally identifiable. The condition that makes the model structure globally identifiable is then discussed. Finally, the estimation accuracy is evaluated through extensive simulations

    The dynamics of collaboration networks and the history of general relativity, 1925–1970

    Get PDF
    This paper presents a novel methodology for defining and analyzing the dynamics of the collaboration networks of scientists working on general relativity from the mid-1920s–1970. During these four and a half decades the status of the theory underwent a radical transformation: from a marginal theory before the mid-1950s to a pillar of modern physics. To investigate this passage—known as the renaissance of general relativity—we used a definition of collaboration networks broader than the co-authorship relations retrievable from online datasets. We constructed a multilayer network, in which each layer represents a different kind of collaboration. After having analyzed the evolution over time of specific parameters of the co-authorship network, we investigated the effects of adding one type of collaboration edge at a time, in a cumulative fashion, on the values of these parameters and on the topology of the collaboration network through time, including rapid shifts in the dynamic evolution of the largest component. This analysis provides robust quantitative evidence that a shift in the structure of the relativity collaboration network occurred between the late 1950s and the early 1960s, when a giant component started forming. We interpret this shift as the central social dynamic of the renaissance process and then identify its central actors. Our analysis disproves common explanations of the renaissance process. It shows that this phenomenon was not a consequence of astrophysical discoveries in the 1960s, nor was it a simple by-product of socio-economic transformations in the physics landscape after World War II

    Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach

    Full text link
    This contribution presents a diagnosis scheme for batteries to detect and isolate internal faults in the form of small parameter changes. This scheme is based on an electrochemical reduced-order model of the battery, which allows the inclusion of physically meaningful faults that might affect the battery performance. The sensitivity properties of the model are analyzed. The model is then used to compute residuals based on an unscented Kalman filter. Primary residuals and a limiting covariance matrix are obtained thanks to the local approach, allowing for fault detection and isolation by chi-squared statistical tests. Results show that faults resulting in limited 0.15% capacity and 0.004% power fade can be effectively detected by the local approach. The algorithm is also able to correctly isolate faults related with sensitive parameters, whereas parameters with low sensitivity or linearly correlated are more difficult to precise.Comment: 8 pages, 2 figures, 3 tables, conferenc

    A parametric open circuit voltage model for lithium ion batteries

    Get PDF
    The financial support of EPSRC UK and Jaguar Land Rover Ltd is gratefully acknowledged.We present an open circuit voltage (OCV) model for lithium ion (Li-ion) cells, which can be parameterized by measurements of the OCV of positive and negative electrode half-cells and a full cell. No prior knowledge of physical parameters related to particular cell chemistries is required. The OCV of the full cell is calculated from two electrode sub-models, which are comprised of additive terms that represent the phase transitions of the active electrode materials. The model structure is flexible and can be applied to any Li-ion cell chemistry. The model can account for temperature dependence and voltage hysteresis of the OCV. Fitting the model to OCV data recorded from a Li-ion cell at 0°C, 10°C, 20°C, 30°C and 40°C yielded high accuracies with errors (RMS) of less than 5 mV. The model can be used to maintain the accuracy of dynamic Li-ion cell models in battery management systems by accounting for the effects of capacity fade on the OCV. Moreover, the model provides a means to separate the cell's OCV into its constituent electrode potentials, which allows the electrodes’ capacities to be tracked separately over time, providing an insight into prevalent degradation mechanisms acting on the individual electrodes.Publisher PDFPeer reviewe
    • …
    corecore