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Abstract

This paper describes aspects of our plan validation tool,
VAL . The tool was initially developed to support the 3rd
International Planning Competition, but has subsequently
been extended in order to exploit its capabilities in plan
validation and development. In particular, the tool has
been extended to include advanced features ofPDDL2.1
which have proved important in mixed-initiative planning in
a space operations project. Amongst these features, treat-
ment of continuous effects is the most significant, with im-
portant effects on the semantic interpretation of plans. The
tool has also been extended to keep abreast of developments
in PDDL, providing critical support to participants and or-
ganisers of the 4th IPC.

1. Introduction

This paper examines the development ofVAL 1, the plan
validation tool forPDDL. The tool played an important role
in the 3rd International Planning Competition [9], allow-
ing reliable and automatic validation of the several thou-
sand plans produced by the competitors. It also provided
competitors with a basis for checking their planners as part
of their own development and debugging cycles and an un-
derstanding of the semantics ofPDDL as described in Fox
and Long [5]. We have found that the capabilities ofVAL

have been critical in understanding the structures of large
plans, with its visualisation and reporting facilities. This
role of VAL has continued into the 4th IPC, which has in-
cluded several minor extensions toPDDL and its semantics
and consequently toVAL .

The original definition ofPDDL2.1 used in the 3rd IPC
included features not used, in particular the expression of
continuous change. Planning has traditionally been a sub-
ject of discrete change; a sequence of well defined discrete
changes to a world state model (with a minority of ex-

1Available at http://planning.cis.strath.ac.uk/VAL/

ceptions). Continuous change to numerical values has of-
ten been been modelled using discrete changes describing
a step function. However this is inadequate in modelling
many real world situations with continuously changing val-
ues that interact with one another and where (sufficiently)
accurate access to the values must be available at all times.
For example, consider the battery power model in figure 5
which is given by a non-trivial system of differential equa-
tions, where at any given point we must ensure that the bat-
tery charge does not cross a critical minimal threshold. The
interactions of continuously changing values are impossi-
ble to model as a step function and moreover checking the
battery has not ran out requires accessing the power level
at any given point due to its complex non-linear structure.
In VAL we have incorporated the validation of plans with
continuous effects, which includes: (i) the development of
the semantics of continuous effects inPDDL (section 3.2),
and (ii) the analysis of differential equations and continu-
ous functions with respect to the semantics (section 4).

In many real world examples the (initial) planning pro-
cess can only be carried out by humans. This could be due
to the tasks containing complex functions (continuous ef-
fects) that are not handled by current planning systems or
complex goals that cannot be expressed in any planning
language. These goals could be technical, political, am-
biguous, prioritized, secretive or changeable — so called
soft goals. In addition, in certain applications there is resis-
tance to wholesale replacement of human operators with au-
tonomous systems and it is important to build trust through
the initial deployment of mixed-initiative systems — sys-
tems that support human-machine interaction in the process
of plan construction [4, 12, 2]. However, if the essential in-
gredients can be modelled in a planning language then we
can at least validate the plan (usingVAL ) to see if the plan is
executable. VAL can report if the plan is flawed and then the
human planners can try to fix their plan. To support this pro-
cess,VAL has been further developed: if the plan is flawed
VAL will give advice on how the plan should be fixed. The
human planner can then use this advice to produce a new
plan and try again, completing a mixed-initiative planning
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cycle. We are developing the plan advice and are aiming
towards a complete plan repair strategy (for certain classes
of invalid plans).

In section 2 we review the semantics of the planning
languagePDDL2.1 used in the IPC series and managed by
VAL . An important extension toPDDL is the use of dura-
tive actions with continuous effects, discussed in section 3,
which includes the semantics of continuous effects within
PDDL2.1. The introduction of continuous effects intoPDDL

not only creates problems in how they are to be integrated
semantically, but also the mathematical analysis problems
of real valued functions involved in the validation of plans
in VAL . These problems are reviewed in section 4. VAL is
written to be a useful tool in the planning community (re-
searchers, developers and users), so we discuss the LATEX
report generation facility in section 5. Section 6 describes
the plan repair advice generated byVAL for invalid plans.
In this facility VAL goes beyond validating a plan and sug-
gests ways to repair an invalid plan. This facility plays an
important role in a collaborative project undertaken by the
authors in space operations planning [13, 7]. The project is
currently concerned with mixed-initiative mode planning,
but it is intended to extend this work to include on-board
autonomy. In mixed-initiative mode,VAL is used to vali-
date and help to repair invalid plans.

2. A Brief Review of PDDL and its Semantics

SincePDDL was first proposed as a community standard
in 1998 the planning research community has seen incre-
mental extensions and modifications as the language has
adapted to various goals. The core ofPDDL was aSTRIPS

language, offering anADL extension. This language has a
semantics that is widely accepted, based on a simple state-
transition model. This semantics has few areas of potential
ambiguity. Perhaps the most significant issue for which al-
ternative resolutions exist is that of concurrency: classical
plans are often considered to besequencesof steps, repre-
senting state transitions, but partial-order planning [11] and
Graphplan [3] both offer alternative models in which some
form of parallelism is considered. McDermott developed a
simple plan validation tool forPDDL that accepted only se-
quential plans. However, the question of interpretation for
more complex extensions ofPDDL is more difficult. There
is no prior widely accepted model, so choices must be made
that are not necessarily universally accepted. Since the lan-
guage plays a central role in communication of domains be-
tween researchers, it is important that there be a standard
by which a common understanding may be developed for
the semantics of domains and plans for those domains. A
formal semantics is the first component of this. However, a
formal semantics is not sufficient by itself, because a formal
semantics is notoriously difficult to read. In practice, many

formal semantics are read in detail by few and understood
in all details by even fewer. To make the semantics accessi-
ble, their implementation as a validation tool is an important
step. In this form, it is possible to confirm understanding of
the semantics by testing various plans and domains with the
tool, confirming the behaviour is as expected. VAL supplies
a variety of forms of feedback, making it possible to explore
quite precisely what might be wrong with a flawed plan and
aiding in the interpretation of the more subtle details of the
semantics. Importantly,VAL can be used to ensure consis-
tent semantics between different planners - even if those
planners have been proven sound, since soundness proofs
are relative to the authors’ formulation of the semantics.

The introduction of timed actions instead of a sequence
of actions is a straightforward extension, this is achieved by
an embedding of the activity into a real time line (see [5]).
However, this introduces the problem of explaining under
what circumstances the end points of actions (when instan-
taneous change occurs) may coincide. This is resolved by
ensuring that for coinciding actions the preconditions and
effects of one action do notinterferewith those of another
action. See [5] onmutex actionsfor details.

Discretized durative actions. When discretizeddurative
actions are used, the modeller specifies thelocal pre- and
post-conditions of the end-points of the interval, as well as
(optionally) invariant conditions that must hold throughout
the interval. This makes it possible to exclude as invalid
precisely those plans that violate the necessary conditions
for successful completion of the durative action without al-
lowing the modeller the expressive power required to model
complex temporal interactions.

It is straightforward to give formal semantics to dis-
cretized durative actions. If no invariant is specified then
a plan containing durative actions can be transformed into
one containing just instantaneous actions, one for each of
the end-points of every durative action in the original plan.
When invariants are specified it is necessary to confirm that
the invariant remains true after every action that occurs be-
tween the start and end-points of the durative action speci-
fying that invariant.

Continuous durative actions. Durative actions in
PDDL2.1 may also be defined so that the modeller can ac-
cess arbitrary time points within the interval of duration us-
ing a variable,#t, that refers to these points thus defining
a continuous function on this interval. This is achieved by
specifying the rate of change of a numerical value, for ex-
ample:increase (distance ?c) (* #t (speed ?c)).

3. Continuous Effects

A continuous effect can only affect metric quantities: it
is not possible to change a propositional fluent continuously.



A metric variable that can be changed by a continuous effect
is called aPrimitive Numerical Expression (PNE). A dura-
tive action that has a continuous effect on a PNE changes it
so that the values taken are described by a continuous func-
tion of time. That is ifv is changing continuously on an in-
terval[t1, t2] then for eacht′ ∈ [t1, t2] the limit limt→t′v(t)
exists and is equal tov(t′). It is possible for other actions
to affect a PNE during the interval over which a continuous
effect is changing it. In this case, the compound continu-
ous effect will be decomposed into segments of continuous
behaviour, punctuated by points of discrete change. These
points can be either discrete changes in the value of the PNE
itself, where an action assigns directly to the PNE, so that
the value describes a discontinuous behaviour, or can be
discrete changes in the rate of change so that the value de-
scribes a piece-wise continuous, but non-differentiable be-
haviour. The latter case occurs when an action modifies
(instantaneously) the derivative of a PNE.

3.1. Interacting Continuous Effects

There may be a number of continuous effects active at
one time each of which additively modifies the derivative
of a PNE. If a PNE has its derivative modified more than
once then the derivative is given by the sum of the contri-
butions. The rate of change of a PNE may also depend on
the value of other PNEs which may themselves be contin-
uously changing. The values of all the changing PNEs are
thus given by a system of differential equations:

dfi

dt
= gi(f1, f2, · · · , fn) i ∈ {1, 2, · · · , n},

where thefi are the PNEs and thegi are some func-
tions depending on the set of continuously changing PNEs.
PNEs that are not changing continuously are treated as con-
stants. For example consider the following continuous ef-
fects which describe the motion of a car driving.

increase (distance ?c) (* #t (speed ?c))
increase (speed ?c) (* #t (acceln ?c))

The rate of change of the PNE for the distance of the car is
given by the PNE for the speed of the car. The PNE for
the speed of the car is in turn given by the PNE for the
acceleration of the car. To solve these differential equations
to give the functions of time describing the motion of the car
we must firstly determine the acceleration, then the speed,
and lastly the distance of the car.

3.2. Implementation: Semi-Simple Plans

The semantics of classical actions in terms of state transi-
tions is familiar. Following [5], we call these actionssimple
actionsand plans constructed only from simple actions we

call simple plans. For lack of space we briefly summarise
definitions given in full in [5]: asimple planis a collection
of pairs(t, a), wheret is a time anda is an action name.
Each distinct time in a simple plan defines ahappeningat
which point a set of simple actions in the simple plan oc-
curs. Aplan extends a simple plan to include durative ac-
tion instances, each with an associated duration.

Durative actions with discrete effects can be given a se-
mantics in terms of the semantics of simple plans. This
is shown by mapping plans containing durative actions to
simple plans (details can be found in [5]), in which the end
points of the durative action are treated as simple actions
in a simple plan. Invariants of durative actions can also be
treated as simple actions with preconditions but no effects.
These appear at points in a simple plan corresponding to the
critical times at which the invariants must be checked dur-
ing the interval of the corresponding durative action. It is
not possible to give the semantics of durative actions with
continuous effects in terms of a simple plan, because the
values of PNEs may be required at arbitrary points over an
interval on which they are continuously changing.

We therefore define an extension of a simple plan, a
semi-simple plan.

Definition 3.1 Act An act is a happening labelled with an
act type. The act type can be one of three values:invariant,
continuous update or regular.

Definition 3.2 Semi-Simple Plan A semi-simple plan,
SSP consists of a finite collection oftimed simple actions
which are 3-tuples(t, A, a), wheret is a rational-valued
time,A is the act type anda is an action name.

Definition 3.3 Act Sequence for a Semi-Simple PlanThe
act sequencefor a semi-simple planSSP , {(t, A)i}i=0...k,
is the lexicographically ordered (by time, then act type), se-
quence of time and act type pairs appearing in the timed
simple actions inSSP . The act types are ordered invari-
ant, continuous update, regular. For alli, ti > 0.

The definition of ground durative actions [5] is extended
to include continuous effects by introducing a simple action
to abstract out the continuous effects. A plan containing
actions with continuous effects can be mapped to a semi-
simple plan in a straightforward way: end points of a dura-
tive action are mapped to regular acts, invariant checks are
mapped to invariant acts and continuous effects are mapped
to continuous update acts. This is illustrated in figure 1. In
(1) we show how the interval of a durative action effect-
ing continuous change can be handled by updating contin-
uously changing PNEs discretely at the end of the interval.
Each invariant check is responsible for confirming correct-
ness over the preceding interval of continuous change. In
(2) we show that if a simple action occurs between the start
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Figure 1. Durative action with continuous ef-
fects.

and end points of a durative action then a continuous up-
date and invariant act for that durative action is placed be-
fore this simple action. This mapping ofP is called thein-
duced semi-simple plan, written semi-simplify(P ). Part (3)
shows how discrete effects can arise, due to parallel activity,
breaking the continuous change into piece-wise continuous
components.

To execute a regular act, we apply the state transition cor-
responding to all of its simple actions using the familiar add
and delete effect semantics, together with numeric updates
in the obvious way. To execute a continuous update act is
also straightforward: the continuously changing PNEs are
updated according to the functions of time describing their
behaviour on the interval from the preceding regular act. In-
variant acts are not straightforward and checking invariants
is considered in section 4.1.

Definition 3.4 Executability of a Semi-Simple Plan A
semi-simple plan,SSP , is executable if it defines an act
sequence,{(t, A)i}i=0...k with states,{Si}i=0...k+1. S0 is
the initial state and for eachi = 0 . . . k, Si+1 is the result
of executing the act,Acti, for (t, A)i:
• If Ai is regular then the preconditions ofActi must

hold inSi andSi+1 is the result of removing delete effects,
adding add effects and applying numeric effects.
• If Ai is invariant then the conditions ofActi must hold

over the interval between the preceding regular act andti
(taking into account any continuous change).
• If Ai is continuous update then the effects ofActi are

applied at timeti for the continuous effects over the interval
between the preceding regular act andti.
The stateSk+1 is called thefinal stateproduced bySSP
and the state sequence{Si}i=0...k+1 is called thetraceof
SSP . Note that an executable plan produces a unique
trace.

Definition 3.5 Validity of a Semi-Simple Plan and of a
Plan A semi-simple plan isvalid if it is executable and pro-
duces a final stateS, such that the goal specification is sat-
isfied inS. A plan,P is valid if semi-simplify(P ) is valid.

4. Plan Validation Challenges from Semantics

4.1. Invariants

Continuous effects have their most significant effect on
the validation of plans when they interact with invariants.
An invariant comparison containing PNEs that are contin-
uously changing can always be expressed as a function of
time, t, that must be greater than zero (or greater than or
equal to zero). For example

t4 − 3t+ 1 > 0 for t ∈ (0, 3)

may be an invariant condition to check. If the invariant ex-
pression is linear in time we can simply evaluate the expres-
sion at the end points of the interval to confirm the condition
holds. However, when checking an invariant condition with
a non-linear expression in time it is no longer sufficient to
check the condition at end points only.The key to the prob-
lem of checking invariants that are comparisons with non-
linear expressions in time is finding the roots of a non-linear
function. This problem is, in general, non-trivial, even in the
case of polynomials. There are many algorithms to find the
roots of equations but we need to be sure of finding all the
roots in a given interval in every possible case. It is there-
fore necessary to impose restrictions on the invariants that
may be expressed to guarantee that they can be validated
on a given interval. For one-clause invariant comparisons
which are given by an inequality that is strict we are in fact
only interested in the existence of real roots on a given open
interval.

Invariants with disjunctions provide an extra complica-
tion when the disjuncts depend on continuously changing
PNEs. For example consider the following invariant with a
disjunction

(t2 − 9t+ 14 ≥ 0) ∨ ((t− 1 > 0) ∧ (−t+ 8 ≥ 0))

for t in (0, 10). We must find the values oft in (0, 10)
for which each disjunct is satisfied, then take their union
and see if the result covers(0, 10). In general it is nec-
essary to find all the roots of all the continuous functions
involved: these points can be used as the end points of the
sub-intervals that each disjunct is satisfied on.

4.2. Differential Equations

The complexity of the differential equations that can be
expressed far exceeds the practicality and feasibility of solv-
ing them. It is therefore necessary to impose certain restric-
tions to guarantee that they can be solved. The following



proposition shows that the values taken by PNEs are given
by polynomials if certain restrictions are imposed.

Proposition 4.1 Let F = {f1, . . . , fn} be a finite set of
PNEs changing continuously on the interval[0, T ] given by

dfi

dt
= gi(f1, f2, . . . , fn) for all i ∈ {1, 2, . . . , n}

wheregi is some function depending onF . The function
gi is restricted to addition, subtraction, multiplication and
division on its terms and division by a PNE inF is not per-
mitted. If the rate of change of no PNE depends on itself
(either directly or indirectly) then the value of every PNE
on [0, T ] is given by a polynomial int.

Proof. Follows by induction on the dependency structure.
If the conditions in Proposition 4.1 were relaxed to al-

low division by a functional expression then a PNE could
take values given by a natural logarithm. If the dependen-
cies could contain loops then exponential functions could
occur, as well as trigonometric functions and so on. So far
VAL handles polynomials and certain classes of exponen-
tial functions involved in the space operations project we
are involved with, see section 6. We are also currently in-
vestigating solving certain classes of differential equations
numerically. We are using the Runge-Kutta-Fehlberg [10]
method and have had very encouraging results.

4.3. Summary of Challenges from Semantics

There are two main challenges in the implementation of
validating a plan with continuous effects:

1. Solving a system of differential equations.

2. Finding the roots of continuous functions on a given
interval (polynomials in particular).

Both these challenges are far from trivial and are described
in some detail in Howey and Long [6].

5. LATEX Plan Validation Report

One of the benefits ofVAL is that it can automatically
produce a LATEX report of the plan validation. The report
includes: the original plan, the plan to be validated (semi-
simple plan), a step by step account of plan validation, plan
repair advice if necessary and graphical diagrams. The ad-
vantages of the LATEX report over a simple text output are
numerous, but foremost is its clarity of presentation. It is
easy to see each detail of the plan validation with simple
use of LATEX text formatting, which also provides a more
formal record. The features of the report may also be used
in other documents, for example figures 2, 3 and 5 are taken
from reports generated byVAL .
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Figure 2. Gantt Chart

5.1. Gantt Chart

The LATEX report includes a Gantt chart of the original
plan given toVAL to validate, this shows the times over
which actions are active highlighting duration, concurrent
activity and dependency. The chart consists of a number of
rows against a time line axis, a durative action is shown as
a bar, a non-durative action as a line. The actions are sorted
into rows by considering each action in turn, as given in the
original plan, using the following rules:

1. An action is placed into the row where the last action
terminated most recently. (If there is more than one
such row it is placed into the first of these rows.)

2. If each row has an active action at the start time of the
action to be assigned a row then the action is placed in
a new row. (The first action is placed in a new row.)

Plans are usually structured so that dependent actions
immediately follow one another, thus rule 1. gives a sen-
sible way of arranging the actions. A domain may contain
a set of objects that represent executives, it may then be de-
sirable to highlight those actions that affect these executives
separately. Therefore, it is possible to group the actions with
the sametrackedobject as a parameter. An extra rule is then
followed:

3. If an action has a tracked object as a parameter then it



can only be placed in a row where the actions in this
row also have this tracked object as a parameter.

Figure 2 shows an example of a plan’s Gantt chart using
VAL (a key is included in the LATEX report), given from the
2002 planning competition using the simple time rover do-
main. Each tracked object has its rows coloured the same
colour and grouped together. Rows 1 and 2 (coloured blue)
show the actions forrover2 , row 3 the actions forrover1

(coloured red) and rows 4 and 5 the actions forrover3

(coloured green).

5.2. Primitive Numerical Expressions

The LATEX report contains graphs showing the values
taken by PNEs over the duration of a plan. These graphs
show discrete changes, linear changes, and non-linear
changes in value. The interaction between PNEs can be
clearly observed as shown by the two graphs showing the
distance and speed respectively of a car driving (figure 3).
Graphs of PNEs can be useful when trying to repair an in-
valid plan, for example when refuelling a fuel tank which
overflows. It could be seen from the graph when is a more
suitable time to refuel.
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Figure 3. Graphs of the distance and speed of
a car from VAL ’s LATEX report.

6. Mixed Initiative Planning

6.1. Mixed-Initiative Planning and Plan Repair

WhenVAL is used in its simplest form, without any pa-
rameters, in the case of plan failure it reports only that the
plan has failed. An option is available for verbose output
in which the system generates a report explaining which ac-
tions in a plan have failed. However, this is still of limited
use since no indication is given of why an action precondi-
tion is unsatisfied. The action precondition might be very
complex, but only have failed due to one literal with the in-
correct truth value. For example, a large factory machine
may have an action for starting processing with a compli-
cated precondition, but an instance of the action in a plan
might fail simply because the machine is not switched on
prior to planned execution of the start action. Feedback

VAL

Plan

Plan Repair
Advice

Human Planner

Accepted Plan

Domain and
Problem Model

Figure 4. Mixed-initiative planning with
validation-repair component.

from the plan validation reporting that the machine needs
to be switched on would be invaluable advice on how to fix
the plan. In complex plans identifying even simple failures
such as this can be difficult due to the obscuring effects of
the actions surrounding the failure.

With the intention of supplying more informed feedback
we have developed inVAL a detailed advice sub-system in-
dicating how to satisfy unsatisfied preconditions in an in-
valid plan. The advice can be used in amixed-initiative
planningcycle in which the human planner firstly produces
a plan either by hand or with the aid of software beforeVAL

simulates execution of the plan giving detailed advice on
how to repair the plan for each unsatisfied action precondi-
tion (or invariant condition or goal). The advice can then be
used by the human planner to produce a new plan correct-
ing the errors, or at least some of them. The new plan can
then be executed usingVAL which produces new plan repair
advice, and so on. The process is illustrated in figure 4.

In general, the advice offered byVAL indicates why a
given plan failed and what conditions must be achieved in
order to repair it. It does not indicate which actions might
be applied to achieve those conditions or explore the inter-
actions they might introduce into the plan if they are added
to it. Therefore, the advice fromVAL must be seen as the
first stage in the repair or reconstruction of a flawed plan:
other components are necessary to decide how best to act
on the advice if this decision is to be made automatically.

Structure of plan repair advice. The advice given for a
failed precondition is derived from aPDDL precondition ex-
pression and stored in a structure called anadvice proposi-
tion.

Definition 6.1 Advice Proposition For a givenPDDL pre-
condition of an action in a plan theadvice propositionpro-
vides instructions on how the state,S, must be altered at
this point in the plan in order to satisfy the precondition.
An advice proposition (AP) is one of the following:
• Instructions to setA to true, for some literalA.



• Instructions to setA to false, for some literalA.
• Instructions to satisfy a comparison consisting of nu-

merical expressions where each PNE has its current value
reported.
• A list of APs whereall must be followed (conjunction

AP).
• A list of APs whereat least onemust be followed (dis-

junction AP).
• No advice (the empty advice case).

VAL produces an advice proposition for each unsatisfied
precondition given by a mapping of aPDDL precondition
and state to an advice proposition.

Definition 6.2 Letφ be the mapping from aPDDL precon-
dition,P , and a state,S, to an advice proposition defined as
follows if P is a literal, comparison, conjunction, disjunc-
tion and implication respectively.

φ(P, S) := if S |= P thenno adviceelsesetP to true

φ(P, S) := if P is an unsatisfied comparison thensatisfyP

φ(∧i Xi, S) := ∧i φ(Xi, S), for each unsatisfiedXi in S

φ(∨i Xi, S) := ∨i φ(Xi, S), for each unsatisfiedXi in S

φ(X → Y, S) := φ(¬X ∨ Y, S)

If P is a negation,P = ¬Q, thenφ(P ) = ψ(Q) where
ψ is defined as below ifQ is a literal, comparison, conjunc-
tion, disjunction, implication and negation respectively.

ψ(Q,S) := if Q 6|= S thenno adviceelsesetQ to false

ψ(Q,S) := if Q is a satisfied comparison thendo not satisfyQ

ψ(∧i Xi, S) := ∨i φ(¬Xi, S), for each satisfiedXi in S

ψ(∨i Xi, S) := ∧i φ(¬Xi, S), for each satisfiedXi in S

ψ(X → Y, S) := φ(X ∧ ¬Y, S)

ψ(Q,S) := φ(Q′, S), if Q = ¬Q′

Notice that the mapφ is well defined sincePDDL precon-
ditions and states are finite, and that starting from aPDDL

precondition that is not satisfied always yields a non-empty
advice proposition. The advice will take the form of lists of
advice which must either all be followed or one of which
must be followed, further advice lists may then be nested.
The actual conditions that need to be changed in the state
will be the truth value of predicates and the numerical val-
ues of PNEs.

Advice on invariants depending on continuous effects
The introduction of continuous effects into a plan further
complicates the validation of an invariant over a given inter-
val, as discussed in section 4.1. There is a natural extension
to the plan repair advice given byφ to invariant conditions
depending on continuously changing PNEs. An invariant
condition must hold for all values on a given interval, this
further consideration only changes the advice given byφ for
comparisons that depend on continuously changing PNEs.
Instead of considering just one state the advice for satis-
fying an invariant must consider: one logical state (for the

predicates), and a continuously changing numerical state on
the interval in question for comparisons depending on con-
tinuous effects. The advice for such a comparison is that
it needs to be satisfied on an interval with a report of the
subset of values of the interval on which the comparison is
satisfied.

For a disjunctive advice proposition which states that one
of the several disjuncts be satisfied the meaning should be
interpreted appropriately when referring to invariants con-
ditions. That is, for each time value in the invariant interval
one of the advice propositions must be followed. The ad-
vice proposition that is followed need not be the same ad-
vice proposition for each time value. See Howey and Long
[6] section 7.2 for more details on disjunctive invariants.

Extending advice into plan repairs.The advice generated
by VAL identifies the flaws in a plan and what conditions
must be achieved to repair the plan. To actually construct a
repair requires further identification of the means of achiev-
ing these conditions. In the worst case, this is equivalent
to planning, but in many cases there are limited choices
that can be used and that represent simple repairs to the
flaws. In particular, where there is an achieving action al-
ready present in the plan, or where only one action could be
used to achieve the condition, the repair is clear. We iden-
tify these cases and enact the repairs directly. Where there
are choices we report these to the human in order to make a
useful selection between them.

Repairing plans with continuous effects (example).Con-
sider a battery power model, as shown in figure 5. The
graph shows how power consumption by a system varies
over a temporal interval in which the system is both recharg-
ing (from solar-power) and is engaged in various power-
consuming activities. This example is taken from our work
on operations planning for Beagle 2 (for more details see
[7]). Interacting activities can cause the power level to dip
below a minimum threshhold. In such a case,VAL observes
that the invariant (that the charge remain above the critical
level) is unsatisfied over certain intervals. The curve that
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Figure 5. Graph of Charge.



VAL produces shows that the charge dips low early in the
interval when powerdraw exceeds solar-power generation.
The shape is complex due to the changing demands of the
activities across the interval.VAL is able to recognise this
flaw and propose advice about how to resolve the conflict.

The process of repair depends on a rich plan represen-
tation, capturing the dependency structure between the ac-
tions and possible external events. This temporal aspect of
the structure is an important additional element, along with
the effect of continuous change, that is not considered in
the otherwise closely related work of Lemai and Ingrand [8]
on plan repair. In their work they consider plans as partial
order structures and build repairs using traditional partial-
order planning flaw repair strategies. This is a valuable ap-
proach to handling plan flaws and can be generalised to han-
dle metric conditions to some extent. However, they do not
consider continuous change or its impact on invariants and
this is an important aspect of the current work.

7. Conclusions

Polynomials were the first continuous effects to be han-
dled byVAL [6]. The approach can be extended to continu-
ous effects described by more complex functions, by using
polynomials to approximate the functions. In our imple-
mentation of exponential functions inVAL we have repre-
sented them directly for improved performance. This exten-
sion has been an important step in the exploitation ofVAL

in the context of the Beagle 2 operations, since the power
models are sufficiently complex that they cannot easily be
modelled using simple polynomials. In fact, it has been
necessary to numerically solve certain classes of differen-
tial equations.

The mixed initiative aspect ofVAL is part of a larger
project to explore the transfer of a variety of planning tech-
nologies into space operations planning in European space
missions. This should be seen in the context of the world-
wide efforts in space exploration and the NASA mobile
robots missions currently being pursued on Mars. These
missions also make extensive use of mixed-initiative plan-
ning aids, including MAPGEN [1], which has proved a very
successful tool in the Mars Exploratory Rover missions.

As planning technology is applied to real application
problems, the need to provide solutions to problems that
are often not considered in the pure planning research com-
munity becomes more apparent. Mixed-initiative planning
has long been considered an important bridging technology
in moving towards automatic planning, while also solving
some of the difficulties faced by planners in complex and
realistic domains. We have usedVAL , our plan validation
technology, as a tool in mixed-initiative planning for space
operations. An important aspect is that it is directly linked
to our development of the semantics ofPDDL, therefore pro-

viding a basis for formal validation of the domain descrip-
tions we are constructing. The importance of continuous
change in this domain is an added complication. We have
advocated the role of continuous change in planning domain
models for some time and this domain is an illustration that
it can be of key importance in real problems.

Plan validation and plan repair are important aspects of
a mixed-initiative planning system, but they also form the
foundations of fully automated planning. The extension
of existing planning technology to address continuous re-
sources and complex metric constraints is a challenge that
we believe must be addressed in order to apply planning in
a wide range of application scenarios.
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