1,016 research outputs found
The detection efficiency of on-axis short gamma ray burst optical afterglows triggered by aLIGO/Virgo
Assuming neutron star (NS) or neutron star/stellar-mass black hole (BH)
mergers as progenitors of the short gamma ray bursts, we derive and demonstrate
a simple analysis tool for modelling the efficiency of recovering on-axis
optical afterglows triggered by a candidate gravitational wave event detected
by the Advanced LIGO and Virgo network. The coincident detection efficiency has
been evaluated for different classes of operating telescopes using observations
of gamma ray bursts. We show how the efficiency depends on the luminosity
distribution of the optical afterglows, the telescope features, and the sky
localisation of gravitational wave triggers. We estimate a plausible optical
afterglow and gravitational wave coincidence rate of 1 yr (0.1
yr) for NS-NS (NS-BH), and how this rate is scaled down in detection
efficiency by the time it takes to image the gravitational wave sky
localization and the limiting magnitude of the telescopes. For NS-NS (NS-BH) we
find maximum detection efficiencies of when the total imaging time is
less than 200 min (80 min) and the limiting magnitude fainter than 20 (21). We
show that relatively small telescopes can achieve similar detection
efficiencies to meter class facilities with similar fields of view,
only if the less sensitive instruments can respond to the trigger and image the
field within 10-15 min. The inclusion of LIGO India into the gravitational wave
observatory network will significantly reduce imaging time for telescopes with
limiting magnitudes but with modest fields of view. An optimal
coincidence search requires a global network of sensitive and fast response
wide field instruments that could effectively image relatively large
gravitational-wave sky localisations and produce transient candidates for
further photometric and spectroscopic follow-up.Comment: 6 pages, 2 figures, version 2, reference added typo correction,
Accepted by MNRA
Nuclear Equation of State from Observations of Short Gamma-Ray Burst Remnants
The favoured progenitor model for short -ray bursts (SGRBs) is the
merger of two neutron stars that triggers an explosion with a burst of
collimated -rays. Following the initial prompt emission, some SGRBs
exhibit a plateau phase in their -ray light curves that indicates additional
energy injection from a central engine, believed to be a rapidly rotating,
highly magnetised neutron star. The collapse of this `protomagnetar' to a black
hole is likely to be responsible for a steep decay in -ray flux observed at
the end of the plateau. In this letter, we show that these observations can be
used to effectively constrain the equation of state of dense matter. In
particular, we show that the known distribution of masses in binary neutron
star systems, together with fits to the -ray light curves, provide
constraints that exclude the softest and stiffest plausible equations of state.
We further illustrate how a future gravitational wave observation with Advanced
LIGO/Virgo can place tight constraints on the equation of state, by adding into
the picture a measurement of the chirp mass of the SGRB progenitor.Comment: accepted for publication in Phys. Rev.
Planning as a Precursor to Scheduling for Space Station Payload Operations
Contemporary schedulers attempt to solve the problem of best fitting a set of activities into an available timeframe while still satisfying the necessary constraints. This approach produces results which are optimized for the region of time the scheduler is able to process, satisfying the near term goals of the operation. In general the scheduler is not able to reason about the activities which precede or follow the window into which it is inputs to scheduling so that the intermediate placing activities. This creates a problem for operations which are composed of many activities spanning long durations (which exceed the scheduler's reasoning horizon) such as the continuous operations environment for payload operations on the Space Station. Not only must the near term scheduling objectives be met, but somehow the results of near term scheduling must be made to support the attainment of long term goals
Architecture for Payload Planning System (PPS) Software Distribution
The complex and diverse nature of the pay load operations to be performed on the Space Station requires a robust and flexible planning approach, and the proper software tools which tools to support that approach. To date, the planning software for most manned operations in space has been utilized in a centralized planning environment. Centralized planning is characterized by the following: performed by a small team of people, performed at a single location, and performed using single-user planning systems. This approach, while valid for short duration flights, is not conducive to the long duration and highly distributed payload operations environment of the Space Station. The Payload Planning System (PPS) is being designed specifically to support the planning needs of the large number of geographically distributed users of the Space Station. This paper problem provides a general description of the distributed planning architecture that PPS must support and describes the concepts proposed for making PPS available to the Space Station payload user community
EPR Steering Inequalities from Entropic Uncertainty Relations
We use entropic uncertainty relations to formulate inequalities that witness
Einstein-Podolsky-Rosen (EPR) steering correlations in diverse quantum systems.
We then use these inequalities to formulate symmetric EPR-steering inequalities
using the mutual information. We explore the differing natures of the
correlations captured by one-way and symmetric steering inequalities, and
examine the possibility of exclusive one-way steerability in two-qubit states.
Furthermore, we show that steering inequalities can be extended to generalized
positive operator valued measures (POVMs), and we also derive hybrid-steering
inequalities between alternate degrees of freedom.Comment: 10 pages, 2 figure
The Swift Gamma-Ray Burst redshift distribution: selection biases and optical brightness evolution at high-z?
We employ realistic constraints on astrophysical and instrumental selection
effects to model the Gamma-Ray Burst (GRB) redshift distribution using {\it
Swift} triggered redshift samples acquired from optical afterglows (OA) and the
TOUGH survey. Models for the Malmquist bias, redshift desert, and the fraction
of afterglows missing because of host galaxy dust extinction, are used to show
how the "true" GRB redshift distribution is distorted to its presently observed
biased distribution. We also investigate another selection effect arising from
a correlation between and . The analysis, which
accounts for the missing fraction of redshifts in the two data subsets, shows
that a combination of selection effects (both instrumental and astrophysical)
can describe the observed GRB redshift distribution. Furthermore, the observed
distribution is compatible with a GRB rate evolution that tracks the global
SFR, although the rate at high- cannot be constrained with confidence.
Taking selection effects into account, it is not necessary to invoke
high-energy GRB luminosity evolution with redshift to explain the observed GRB
rate at high-.Comment: Version 2. Includes new data, figures and refined analysi
- …