120 research outputs found

    Evaluacion de los analisis de suelos de las zonas productoras de yuca en Colombia

    Get PDF
    The results are given of physicochemical analyses of soils and estimated cassava yields for five production zones in Colombia. There was little correlation between yield and the factors studied. Yields tended to increase as P increased; and there was a positive response to K in 2 zones and Ca/Mg in 2 others. However, there were contradictory results with K and pH in three of the zones. Other factors affecting yield should be studied to find the reasons for this discrepancy. (CIAT

    Farmer participatory extension (FPE) methodologies used in the cassava project in Thailand

    Get PDF

    Nutritional Disorders of Cassava

    Get PDF

    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    Get PDF
    We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests

    Host and virus effects on reversion in cassava affected by cassava brown streak disease

    Get PDF
    The phenomenon of virus-infected plants naturally recovering health is known as ‘reversion’, and is a type of resistance mechanism exploited in some crop plants for disease control. Various parameters were investigated that affect reversion from cassava brown streak disease (CBSD) in three cassava varieties (Albert, Kaleso and Kiroba) that differ in levels of resistance to the disease. Cassava plants were inoculated by grafting with two virus species (Ugandan cassava brown streak virus, UCBSV and Cassava brown streak virus, CBSV) that cause CBSD, and the plants grown from them were subsequently assessed for reversion. The rate of reversion depended on the cassava variety, virus species, and the length and position of the stem cuttings used. A significantly high proportion of progenies were virus-free (reverted) for the resistant variety Kaleso (64·1% for UCBSV and 54·9% of CBSV), compared to the tolerant variety Kiroba (56·7 and 45·5%) and the susceptible control Albert (38·9 and 35·1%). The highest number of virus-free plants was generated from short 10 cm long cuttings (e.g. 60·1% for Kaleso for CBSV) compared to 20 cm long stem cuttings (e.g. 21·4% for Albert). Cuttings taken from upper stems of diseased plants produced most virus-free progenies compared to middle and lower parts. More than 50% virus-free plants were obtained in the resistant and tolerant varieties. This is a highly valuable finding and could be exploited for developing strategies to control the current CBSD epidemic in eastern and central Africa

    Prospects for Genomic Selection in Cassava Breeding

    Get PDF
    Article purchased; Published online: 28 Sept 2017Cassava (Manihot esculenta Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden

    The role of community and population ecology in applying mycorrhizal fungi for improved food security.

    Get PDF
    The global human population is expected to reach ∼9 billion by 2050. Feeding this many people represents a major challenge requiring global crop yield increases of up to 100%. Microbial symbionts of plants such as arbuscular mycorrhizal fungi (AMF) represent a huge, but unrealized resource for improving yields of globally important crops, especially in the tropics. We argue that the application of AMF in agriculture is too simplistic and ignores basic ecological principals. To achieve this challenge, a community and population ecology approach can contribute greatly. First, ecologists could significantly improve our understanding of the determinants of the survival of introduced AMF, the role of adaptability and intraspecific diversity of AMF and whether inoculation has a direct or indirect effect on plant production. Second, we call for extensive metagenomics as well as population genomics studies that are crucial to assess the environmental impact that introduction of non-local AMF may have on native AMF communities and populations. Finally, we plead for an ecologically sound use of AMF in efforts to increase food security at a global scale in a sustainable manner
    corecore