11,446 research outputs found

    Torque-ripple minimization in modular permanent-magnet brushless machines

    Get PDF
    This paper discusses the suitability of four-phase, five-phase, and six-phase modular machines, for use in applications where servo characteristics and fault tolerance are key requirements. It is shown that an optimum slot number and pole number combination exists, for which excellent servo characteristics could be achieved, under healthy operating conditions, with minimum effects on the power density of the machine. To eliminate torque ripple due to residual cogging and various fault conditions, the paper describes a novel optimal torque control strategy for the modular permanent-magnet machines operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved, while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a four-phase fault-tolerant drive system

    Optimal torque control of fault-tolerant permanent magnet brushloss machines

    Get PDF
    Describes a novel optimal torque control strategy for fault-tolerant permanent magnet brushless ac drives operating in both constant torque and constant power modes. The proposed control strategy enables ripple-free torque operation to be achieved while minimizing the copper loss under voltage and current constraints. The utility of the proposed strategy is demonstrated by computer simulations on a five-phase fault-tolerant drive system

    Anomalies and divergences in N=4 supergravity

    Get PDF
    The invariants in D=4, N=4 supergravity are discussed up to the three-loop order (where one expects a general R^4 structure). Because there is an anomaly in the rigid SL(2,R) symmetry of this theory, the analysis of possible restrictions on three-loop divergences due to duality needs careful treatment. We show that this anomalous symmetry is still strong enough at the three-loop order to require duality invariance of candidate counterterms. Provided one makes the additional assumption that there exists a full 16-supercharge off-shell formulation of the theory, counterterms at L \ge 2 loops would also have to be writable as full-superspace integrals. At the three-loop order such a duality-invariant full-superspace integral candidate counterterm exists, but its duality invariance is marginal in the sense that the full-superspace counter-Lagrangian is not itself duality invariant. We show that, subject to the assumption that a full off-shell quantisation formalism exists, such marginal invariants are not allowable as counterterms.Comment: 15 pages, version published in Phys. Lett.

    Effect of optimal torque control on rotor loss of fault-tolerant permanent-magnet brushless machines

    Get PDF
    A faulted phase in a fault-tolerant permanent-magnet brushless machine can result in significant torque ripple. However, this can be minimized by using an appropriate optimal torque control strategy. Inevitably, however, this results in significant time harmonics in the phase current waveforms, which when combined with inherently large space harmonics, can result in a significant eddy-current loss in the permanent magnets on the rotor. This paper describes the optimal torque control strategy which has been adopted, and discusses its effect on the eddy-current loss in the permanent magnets of four-, five-, and six-phase fault-tolerant machines

    Invariants and divergences in half-maximal supergravity theories

    Full text link
    The invariants in half-maximal supergravity theories in D=4,5 are discussed in detail up to dimension eight (e.g. R^4). In D=4, owing to the anomaly in the rigid SL(2,R) duality symmetry, the restrictions on divergences need careful treatment. In pure N=4 supergravity, this anomalous symmetry still implies duality invariance of candidate counterterms at three loops. Provided one makes the additional assumption that there exists a full 16-supercharge off-shell formulation of the theory, counterterms at L>1 loops would also have to be writable as full-superspace integrals. At the three-loop order such a duality-invariant full-superspace integral candidate counterterm exists, but its duality invariance is marginal in the sense that the full-superspace counter-Lagrangian is not itself duality-invariant. We show that such marginal invariants are not allowable as counterterms in a 16-supercharge off-shell formalism. It is not possible to draw the same conclusion when vector multiplets are present because of the appearance of F^4 terms in the SL(2,R) anomaly. In D=5 there is no one-loop anomaly in the shift invariance of the dilaton, and we argue that this implies finiteness at two loops, again subject to the assumption that 16 supercharges can be preserved off-shell.Comment: 81 page

    Ozonation of cooling tower waters

    Get PDF
    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria

    L-branes

    Get PDF
    The superembedding approach to pp-branes is used to study a class of pp-branes which have linear multiplets on the worldvolume. We refer to these branes as L-branes. Although linear multiplets are related to scalar multiplets (with 4 or 8 supersymmetries) by dualising one of the scalars of the latter to a pp-form field strength, in many geometrical situations it is the linear multiplet version which arises naturally. Furthermore, in the case of 8 supersymmetries, the linear multiplet is off-shell in contrast to the scalar multiplet. The dynamics of the L-branes are obtained by using a systematic procedure for constructing the Green-Schwarz action from the superembedding formalism. This action has a Dirac-Born-Infeld type structure for the pp-form. In addition, a set of equations of motion is postulated directly in superspace, and is shown to agree with the Green-Schwarz equations of motion.Comment: revised version, minor changes, references added, 22 pages, no figures, LaTe

    Powder alignment system for anisotropic bonded NdFeB Halbach cylinders

    Get PDF
    A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentall

    Energy efficient engine: Turbine intermediate case and low-pressure turbine component test hardware detailed design report

    Get PDF
    A four stage, low pressure turbine component has been designed to power the fan and low pressure compressor system in the Energy Efficient Engine. Designs for a turbine intermediate case and an exit guide vane assembly also have been established. The components incorporate numerous technology features to enhance efficiency, durability, and performance retention. These designs reflect a positive step towards improving engine fuel efficiency on a component level. The aerodynamic and thermal/mechanical designs of the intermediate case and low pressure turbine components are presented and described. An overview of the predicted performance of the various component designs is given
    • …
    corecore