'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
A faulted phase in a fault-tolerant permanent-magnet brushless machine can result in significant torque ripple. However, this can be minimized by using an appropriate optimal torque control strategy. Inevitably, however, this results in significant time harmonics in the phase current waveforms, which when combined with inherently large space harmonics, can result in a significant eddy-current loss in the permanent magnets on the rotor. This paper describes the optimal torque control strategy which has been adopted, and discusses its effect on the eddy-current loss in the permanent magnets of four-, five-, and six-phase fault-tolerant machines