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The invariants in D = 4, N = 4 supergravity are discussed up to the three-loop order (where one expects
a general R4 structure). Because there is an anomaly in the rigid SL(2,R) symmetry of this theory, the
analysis of possible restrictions on three-loop divergences due to duality needs careful treatment. We
show that this anomalous symmetry is still strong enough at the three-loop order to require duality
invariance of candidate counterterms. Provided one makes the additional assumption that there exists
a full 16-supercharge off-shell formulation of the theory, counterterms at L � 2 loops would also
have to be writable as full-superspace integrals. At the three-loop order such a duality-invariant full-
superspace integral candidate counterterm exists, but its duality invariance is marginal in the sense
that the full-superspace counter-Lagrangian is not itself duality-invariant. We show that, subject to the
assumption that a full off-shell quantisation formalism exists, such marginal invariants are not allowable
as counterterms.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Developments in the evaluation of scattering amplitudes us-
ing unitarity methods over the past decade or so have made it
possible to push the investigation of the onset of ultra-violet diver-
gences in maximal supergravity theories to higher-loop orders than
would have been possible using conventional Feynman-diagram
techniques. In particular, it has been shown that D = 4, N = 8
supergravity is finite at three loops (R4) [1], and that D = 5 max-
imal supergravity is finite at four loops (∂6 R4) [2], despite the
existence of corresponding counterterms, at least at the linearised
level [3–5]. Since these invariants are F-type, i.e. correspond to in-
tegrals over fewer than the maximal number of odd superspace
coordinates, it might have been thought that they should be pro-
tected by superspace non-renormalisation theorems [5], but it is
difficult to justify this argument because there are no known off-
shell versions of maximal supergravity that realise all of the super-
symmetries linearly. Indeed, such off-shell versions cannot exist in
every dimension because it is known that divergences do occur for
F-type counterterms in D = 6 and D = 7 above one loop [6]. How-
ever, these finiteness results can be explained instead by duality-
based arguments. E7(7) Ward identities can be defined at the cost
of manifest Lorentz covariance [7,8], and can be shown to be non-
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anomalous.1 These Ward identities imply that the counterterms
associated to logarithmic divergences must be E7(7) invariant. The
unique SU(8) invariant R4 candidate counterterm can be proved
to violate E7(7) symmetry from a perturbative scattering ampli-
tude approach [9] and from a direct field-theoretic argument [10]
making use of dimensional reduction and of the uniqueness of the
D = 4 counterterms at the linearised level [11]. In addition, there
is no superspace measure for the R4 invariant at the full non-
linear level, while an analysis of the closed super-four-form that
does define the supersymmetric invariant leads to the same con-
clusion: there is no three-loop acceptable counterterm that is both
N = 8 supersymmetric and E7(7) duality-invariant [10]. Further-
more, these arguments can be extended to the other two F-term
invariants in D = 4 arising at the five- and six-loop orders [10,12],
there being no four-loop invariant [11]. One can then use dimen-
sional reduction and the known divergences at one, two and three
loops in D = 8,7 and 6, respectively, to show that these are the
only F-term divergences that can arise in maximal supergravity in
any dimension. This result can also be seen from an analysis of
the conjectured duality properties of superstring theory [13,14]. It
has also been suggested that E7(7) symmetry could be even more

1 The absence of a supersymmetric anomaly for the E7(7) Ward identities that
cannot be removed by supersymmetric non-invariant counterterms has not been
rigorously established at all orders in perturbations theory. Nonetheless, the com-
plete characterisation of the supersymmetry invariants of type R4, ∂4 R4, ∂6 R4,
∂8 R4 [11,9,19] allows one to prove that such an anomaly cannot appear before eight
loops.
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restrictive and that N = 8 supergravity might, as a consequence,
be finite at all orders [15,16].

It therefore seems that maximal supergravity must be ultra-
violet finite through at least six loops in D = 4, and that there are
no divergences that correspond to the known linearised BPS coun-
terterms (F-terms) [3,4,11,17,18]. At the seven-loop order, we reach
the borderline between F-term and D-term invariants. At this or-
der, there would seem to be a candidate D-term invariant, the
volume of superspace, which is manifestly symmetric with respect
to all symmetries and which would be difficult to protect by con-
ventional field-theoretic non-renormalisation arguments. However,
it is now known that the volume of superspace vanishes on-shell
for any N in D = 4 although there is still an N = 8 seven-
loop invariant that can be written as a manifestly duality-invariant
harmonic-superspace integral over 28 odd coordinates [19]. The
situation at this order is therefore somewhat ambiguous, although
it is unlikely that there is an off-shell formulation of the maximal
supergravity theory preserving all the supersymmetries linearly
which could be used to try to justify the absence of a seven-loop
divergence. A direct computational resolution of this ambiguity
would seem to be a tall order, at least in the near future, but
a similar situation arises in the half-maximal case which is more
tractable from both computational and formal points of view.

In D = 4, N = 4 supergravity the F/D borderline occurs at
the three-loop level, i.e. for R4-type counterterms. It has recently
been shown that half-maximal supergravity is finite at this or-
der [20–22] and that this state of affairs persists in D = 5 [23]
(where the relevant loop order is two) and in the presence of
vector multiplets [21,22]. These finiteness results have been ob-
tained from scattering amplitude computations [20,23] and from
string theory [21,22]. Field-theoretic arguments in support of these
results have also been given using duality and conformal sym-
metry [24,25]. From the counterterm point of view, the situation
resembles seven loops in N = 8 because the natural candidate
for the R4 invariant would be the volume of superspace. As in
N = 8, this vanishes in N = 4 [19], but one can also construct R4

invariants as harmonic-superspace integrals over twelve odd coor-
dinates instead of the full sixteen. As we shall show, the unique
duality-invariant counterterm of this type can be re-expressed
as a full-superspace integral with an integrand that is not itself
duality-invariant; in fact it is the Kähler potential of the scalar
manifold. The issue is therefore to understand if this property is
enough to rule out this counterterm as a possible divergence.

For N = 4, D = 4 supergravity, the duality group is SL(2,R).
This symmetry is anomalous [26], but we shall show that the
anomalous Ward identities still require the three-loop countert-
erm to be duality-invariant. To show that such an invariant does
not correspond to a divergence, we shall need to assume that
there is an off-shell formulation of the theory that preserves
all of the supersymmetries linearly as well as duality symmetry.
This is not possible in conventional superspace for the case in
hand [27], so we shall have to make use of harmonic-superspace
techniques [28,29]. In addition, duality symmetry is not compatible
with manifest Lorentz invariance, and so it seems likely that some
version of the light-cone harmonic-superspace formalism will be
required [30].

To summarise, the dimension-eight (R4) invariant in N = 4,
D = 4 supergravity can be considered to be on the F/D borderline
because it can be expressed either as an integral of a duality-
invariant integrand over twelve odd coordinates or as a full-
superspace integral whose integrand is not itself invariant even
though the full integral is. If we make the assumption that there
exists an off-shell version of the theory that preserves all of the
supersymmetries linearly as well as the duality symmetries, then,
as we shall show, the divergences would have to correspond to
full-superspace integrals with integrands that are duality-invariant
and hence would be absent at this loop order.

One clear result emerging from our analysis is the fact that the
uniqueness of the dimension-eight invariant means that the ab-
sence of divergences in four-point amplitudes implies that they
will also be absent in all higher-point ones. The borderline F/D
problem is difficult to analyse from our field-theoretic point of
view, but for higher loops there will certainly be candidate coun-
terterms that are purely D-type and whose integrands are invariant
with respect to all known symmetries. In this sense, an unambigu-
ous test of “miraculous” ultra-violet cancellations in half-maximal
supergravity requires calculations at one loop higher than those
that have been carried out to date.

2. D = 4, N = 4 supergravity

The fields for D = 4, N = 4 supergravity consist of two scalars
parametrising the coset U (1) \ SL(2,R), a quadruplet of Weyl
spinors χ i

α , transforming under the fundamental representation
of SU(4), six vector fields with field strengths Mαβ i j , four grav-
itinos with field strengths ραβγ i , and the graviton with on-shell
field strength the Weyl tensor Cαβγ δ , together with their com-
plex conjugates. Here, α,β, . . . are two-component spinor indices.
In the linearised case these fields fit into a chiral superfield W .
In the non-linear case they appear in the various components of
the superspace tensors: the torsion, the curvature and the field
strength of the vectors [31]. The dimension-zero torsion remains
the same as in the flat case and is given by

T i
αβ̇ j

c = −iδi
jσ

c
αβ̇

, (1)

while the spinor field appears at dimension one-half,

T i
α

j
β
γ̇ k = −εαβεi jklχ̄

γ̇
l . (2)

The scalars are described by an SU(1,1) (∼= SL(2,R)) matrix V
which can be parametrised in the form

V =
(

U U T
Ū T̄ Ū

)
(3)

where

U Ū (1 − T T̄ ) = 1. (4)

The U (1) gauge-invariant complex scalar superfield T can be con-
sidered to be a coordinate on the unit disc. Both U and T are chiral
while

Di
αU = 1

U

T̄

1 − T T̄
χ i

α, Di
αT = 1

U 2
χ i

α. (5)

3. R2 invariants

The first possible on-shell invariants in pure N = 4 supergrav-
ity are all of generic R2 structure. Although the relevant SL(2,R)

invariants vanish on-shell for trivial spacetime topology, there do
exist non-vanishing invariants with a non-trivial dependence on
the complex scalar field, which play a key rôle in the discussion of
anomalies.

Because both Ū and T̄ are anti-chiral, one might think that
one could define R2-type type invariants as anti-chiral superspace
integrals of functions of these fields. However, owing to the pres-
ence of the dimension-one-half torsion component, there is no
chiral measure, as in the case of the R4 invariant in IIB supergrav-
ity [32,33]. Instead we can construct R2 invariants involving an
arbitrary anti-holomorphic function F(T̄ ) from closed superforms.
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Any invariant in D = 4, whether or not it is expressible as
a superspace integral, can be written in terms of a closed super-
four-form L which can be expanded as L = ∑

p+q=4 Lp,q where
(p,q) denote the even (odd) degrees of the components of the
form in a preferred basis, see e.g. [34]. The invariant is then given
by integrating ι∗L, evaluated at θ = 0, over spacetime, where ι in-
jects spacetime into superspace. This pull-back involves the sum of
the components Lp,q contracted with p spacetime vielbein forms
and q spacetime gravitino forms. The differential decomposes into
four components [35],

d = d0 + d1 + t0 + t1, (6)

of bi-degrees (1,0), (0,1), (−1,2) and (2,−1) respectively. The
first two components of d are respectively even and odd differ-
ential operators while the other two are algebraic involving the
dimension-zero and dimension-three-halves torsions. The latter is
not relevant to the present discussion, while the former can be
defined in terms of the contraction operator ιc Ea ≡ δa

c and the
dimension-zero torsion by

t0Lp,q = −iE β̇ i ∧ Eα
i

(
σ c)

αβ̇
∧ ιc Lp,q. (7)

Since d2 = 0 it follows that t0 is nilpotent so that we can define
cohomology groups H p,q

t [35]. This means that we can analyse su-
perspace cohomology in terms of elements of this group. For our
case it is easy to see that H p,q

t = 0 for p > 0 so that any closed
four-form is generated by a non-exact (0,4)-form that is d1-closed
in t0-cohomology, i.e. an element in spinorial cohomology [36].
In four dimensions, we can split the odd indices into dotted and
undotted ones, so that L0,4 = ∑

r+s=4 M0,r,s .

The closed, complex four-form Rα̇β̇ ∧ Rα̇β̇ gives rise to a trivial
cocycle in a topologically trivial spacetime. Nevertheless, it can be
used as a starting point from which to construct the invariants we
are interested in. From the fact that Rα̇iβ̇ j,γ̇ δ̇ = 0 we can see that
L0,4 = M0,4,0 + M0,3,1, up to t0 exact terms, whereas a cocycle for
a chiral integral would also have M0,3,1 = 0. One can then show
after some algebra that the following expressions define closed
super-four-forms L[F ] for any anti-holomorphic function F(T̄ ):

M0,4,0 → Mi
α

j
β

k
γ

l
δ

= εαβεγ δ

(
F (0)(T̄ )Mij

α̇β̇
Mα̇β̇kl

− Ū−2∂̄F (0)(T̄ )εi jpqχα̇pχβ̇q Mα̇β̇kl

+ 1

6
Ū−4

(
∂̄ − 2T

1 − T T̄

)
∂̄F (0)(T̄ )εi jpqεklrsχα̇pχβ̇qχ

α̇
r χ

β̇
s

)

+� (8)

and

M0,3,1 → Mi
α

j
β

k
γ δ̇l

= −εαβεη̇ς̇χk
γ χη̇l

×
(
F (0)(T̄ )Mij

δ̇ς̇
− 1

3
Ū−2∂̄F (0)(T̄ )εi jpqχδ̇pχς̇q

)
+�, (9)

where � denotes permutations to be added to obtain the right
symmetry structure.

By construction, for F = 1, the chiral superform reduces to
Rα̇β̇ ∧ Rα̇β̇ so that the general invariant of this type includes the
term

L[F] = F(T̄ )Rα̇β̇ ∧ Rα̇β̇ + · · · . (10)
This invariant is of course complex, and the associated real invari-
ants will be obtained from its real and imaginary parts, which are
respectively even and odd with respect to parity.

4. R4-type invariants

It is well known that there are no R3-type invariants in su-
pergravity, so that the next non-trivial invariants are of R4 type
which arise at three loops in D = 4. At this order, in N = 4, ex-
amples of such invariants are given by full-superspace integrals of
arbitrary functions of the complex scalar superfield T . To analyse
these, it will turn out to be useful to use harmonic-superspace
techniques in a supergravity context.

In flat superspace we recall that a G-analytic (G for Grassmann)
structure of type (p,q) consists of a set of p Ds and q D̄s that
mutually anti-commute, and that such sets can be parametrised
by the coset spaces (U (p)× U (N − (p +q))× U (q)) \ U (N ), which
are compact, complex manifolds (flag manifolds). Harmonic super-
spaces consist of ordinary superspaces augmented by the above
cosets. However, in curved superspace one has to check that these
derivatives, suitably extended to include the harmonic directions,
remain involutive in the presence of the non-trivial geometry.
It turns out that this is only possible when both p,q � 1 for
N > 4, but for N = 4 one can have p,q � 2 [37].

Let us consider first the N = 4 theory in (4,1,1) harmonic su-
perspace. The harmonic variables, u1

i , ur
i , u4

i (and their inverses
ui

1, ui
r , ui

4), where r = 2,3, can be used to parametrise the coset
(U (1) × U (2) × U (1)) \ U (4) in an equivariant fashion. We can as-
sociate four odd normal coordinates with the four involutive odd
directions, as in [19,38], and use these to relate full-superspace
integrals to integrals over the remaining twelve odd coordinates,
i.e. over (4,1,1) analytic superspace (the analogue of chiral su-
perspace for G-analyticity). This programme was carried out in
pure N = 4 and N = 8 supergravities in [19] to show that the
full-superspace integral of the Berezinian (superdeterminant) of
the supervielbein, E , vanishes subject to the classical equations of
motion. We refer to [19,38] for more details; here, we will sim-
ply state that the full-superspace integral of an arbitrary function
H(T , T̄ ) can be rewritten as∫

d4x d16θ E H(T , T̄ )

= 1

4

∫
dμ(4,1,1) ε

αβεα̇β̇ D1
α D1

β Dα̇4 D β̇4 H(T , T̄ )

= 1

4

∫
dμ(4,1,1) ε

αβεα̇β̇χ1
αχ1

βχα̇4χβ̇4

× (
(1 − T T̄ )2∂∂̄ − 2

)
(1 − T T̄ )2∂∂̄ H(T , T̄ ), (11)

where numerical indices are obtained from SU(4) indices by con-
tracting with the appropriate u, e.g. D1

α = u1
i Di

α . Clearly this
integral vanishes if H is an eigenfunction of the scalar target-
space Laplace operator with eigenvalue 0 or 2, and in particular
if H(T , T̄ ) is a constant, or more generally a holomorphic function.
However, one also straightforwardly computes that
(
(1 − T T̄ )2∂∂̄ − 2

)
(1 − T T̄ )2∂∂̄

(− ln(1 − T T̄ )
) = 1 (12)

and therefore the full-superspace integral of ln(1 − T T̄ ) is duality-
invariant. This is the Kähler potential of the symmetric space
SU(1,1)/U (1), which in terms of τ = i 1−T

1+T is K = − ln(Im[τ ]).
Under a duality transformation this transforms into the sum of
a holomorphic function of τ and its conjugate so that its integral
over superspace is invariant.

For any function G(T , T̄ ) we can define a (4,1,1) analytic su-
perspace integral by
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S[G] = 1

4

∫
dμ(4,1,1) ε

αβεα̇β̇χ1
αχ1

βχα̇4χβ̇4G(T , T̄ ) (13)

because the integrand is G-analytic, i.e. annihilated by D1
α and Dα̇4.

This follows from the properties of χ under differentiation and
from the fact that D1

α T ∝ χ1
α , so that differentiating G leads to

cubic (and hence vanishing) expressions in χ1 or χ̄4. This class of
invariants reproduces all the possible invariants at this dimension
in the linearised approximation
∫

dμ(4,1,1) ε
αβεα̇β̇χ1

αχ1
βχα̇4χβ̇4G(T , T̄ )

∼
∫

d4x d16θ W 2W̄ 2G(W , W̄ )

∼
∫

d4x G(t, t̄)Cαβγ δCαβγ δCα̇β̇γ̇ δ̇C α̇β̇γ̇ δ̇ + · · · , (14)

where t = T |θ=0, and therefore includes all the R4-type invariants.
Moreover, a generic invariant in this class can always be rewritten
as a full-superspace integral of a function H which is a solution of
the equation

(
(1 − T T̄ )2∂∂̄ − 2

)
(1 − T T̄ )2∂∂̄ H(T , T̄ ) = G(T , T̄ ). (15)

5. The sl2(R)(R)(R) anomaly and the three-loop divergence

The SL(2,R) duality group acts on the complex scalar superfield

τ [T ] ≡ i
1 − T

1 + T
= a + ie−2φ +O(θ) (16)

in the standard way. In order to discuss its anomaly, it is conve-
nient to introduce anti-commuting parameters for an infinitesimal
(BRST) sl2R transformation as
(

h e
f −h

)
∈ sl2. (17)

One defines the BRST-like operator associated to the sl2R symme-
try by

δτ = e + 2hτ − f τ 2, δ f = −2hf ,

δh = ef , δe = 2he. (18)

One then straightforwardly checks that f τ − h is a representative
of the unique cohomology class of δ linear in the anti-commuting
parameters. Although this term is complex, its real part is δ-exact,
i.e. f (τ + τ̄ ) − 2h = −δ ln(τ − τ̄ ).

This symmetry is non-linear and is only defined by Slavnov–
Taylor functional identities. We shall discuss this in detail in an ac-
companying paper, but here we content ourselves with a some-
what informal discussion which does, nevertheless, lead to the
right answer. There are no one-loop divergences in the theory,
but the one-loop effective action Γ (1) is nonetheless anomalous,
δΓ (1) ∼A(1) .

Because the invariant ι∗L[F ] defined above is linear in the
function F , one finds that the anomaly functional is

A(1) = i

16π2

∫
ι∗

(
L[ f τ̄ − h] − L̄[ f τ − h])

= 1

16π2

∫ (
f e−2φ Rab ∧ Rab

+ ( f a − h)
1
εabcd Rab ∧ Rcd + · · ·

)
. (19)
2

Indeed, the anomalous Ward identity implies that the variation
of the 1PI generating functional produces a cohomologically non-
trivial term f e−2φ Rab ∧ Rab [8], but consistency with supersymme-
try then implies that this must occur together with the cohomo-
logically trivial term ( f a−h) 1

2 εabcd Rab ∧ Rcd . This term implies that
there is a current anomaly in the scaling symmetry corresponding
to the parameter h.

There is no candidate for a two-loop anomaly so we deduce
that the variation of the divergent part of the three-loop effective
action is

δΓ
(3)

div ∼ [
A(1) · Γ ](2)

div (20)

where the right-hand side denotes the divergent part of the two-
loop effective action with one insertion of the one-loop anomaly.
The h-dependent part of the anomaly is a total derivative and
hence does not contribute, so that the non-invariance of the ef-
fective action at three loops is proportional to the parameter f ;
in other words, the parabolic sub-algebra determined by e, h re-
mains unbroken.

A general supersymmetric three-loop invariant can be writ-
ten as a harmonic-superspace integral S[G] as in (13). Because
δS[G(3)] = S[δG(3)] and S[δG(3)] is non-zero for any non-zero func-
tion δG(3) , the function G(3)(τ , τ̄ ) must itself be invariant with
respect to the action of the parabolic subgroup, i.e.

(∂ + ∂̄)G(3)(τ , τ̄ ) = 0, (τ∂ + τ̄ ∂̄)G(3)(τ , τ̄ ) = 0. (21)

One can easily check that the only solution is a constant. At this
order, therefore, shift and scaling invariance together with local
supersymmetry are enough to require that the invariant be fully
duality-invariant,2 and, as a corollary, the anomaly operator cannot
get renormalised at the two-loop order. The only available coun-
terterm consistent with all symmetries at this order is the R4-type
duality invariant

S3 =
∫

dμ(4,1,1) ε
αβεα̇β̇χ1

αχ1
βχα̇4χβ̇4. (22)

This invariant can also be written as the full-superspace integral of
the Kähler potential, as we have seen previously.

6. Algebraic renormalisation in superspace

We shall now argue that such a three-loop divergence is not
allowed if we assume that there is an off-shell version of theory
that preserves all of the supersymmetries linearly as well as du-
ality. Standard non-renormalisation theorems in superspace then
imply that any acceptable counterterm should be a full-superspace
integral of the background fields that does not depend explicitly on
the quantum prepotentials (which may have low dimensionality).3

In N = 4 supergravity at three loops there is such a counterterm,
namely the full-superspace integral of the Kähler potential of the
scalar manifold, but it has the property that the integrand is not
itself duality-invariant. We shall now argue that this is enough to
forbid the occurrence of R4 divergences.

The Callan–Symanzik equation implies that an R4 three-loop di-
vergence necessarily would mean that the Lagrangian density con-
sidered as a local operator insertion also would be renormalised
into the corresponding R4 density [39–41]. Within an off-shell for-
mulation of the theory in superspace, this divergence would be

2 Note that in components, τ = a + ie−2φ , these equations just imply that the
invariant can only depend on the scalar through contractions with the vector fields
and e2φ∂μa and ∂μφ , which are not necessarily duality-invariant.

3 See, e.g. [5] for a review of this topic.
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associated to a three-loop renormalisation of the Lagrange density
in superspace, which would necessarily depend on prepotentials.
Although we do not know this formulation explicitly, supersym-
metric gauge theories formulated in superspace within the back-
ground field method generically admit a Lagrangian density that
does not depend on the background prepotentials explicitly (up to
a purely classical term that does not affect the Feynman rules in
superspace). We shall assume that this density transforms consis-
tently with respect to duality transformations in such a way that
one can define SL(2,R) Ward identities. This implies that the vari-
ation of the Lagrange density is the total derivative of a vector
density

δL(0) = (−1)M∂ML(0)M . (23)

We will refer to this vector density as a co-form of degree one, and
note that consistency requires the existence of a chain of co-forms
satisfying

δL(0)M = (−1)N∂NL(0)N M ,

δL(0)N M = (−1)P ∂PL(0)P N M ,

δL(0)P N M = 0, (24)

where we define a co-form of degree n as an object transform-
ing as the tensor product of a density with the graded antisym-
metric tensor product of n vectors. Of course, on a Riemannian
d-dimensional manifold such an object would be equivalent to
a (d − n)-form via contraction with the Levi-Civita tensor, but in
superspace they are distinct objects. Note that a co-form or a form
can have an arbitrarily high degree in superspace, and there is
correspondingly no notion of a top form; however, there are only
three anti-commuting parameters associated to sl2, and therefore
the last co-form in the above sequence will have (at most) degree
three (∝ ef h).

One can ensure duality invariance by introducing a source for
each of these co-forms,∫

d4x d16θ

(
L(0)u +L(0)M uM

+ 1

2
L(0)N M uMN + 1

6
L(0)P N M uMN P

)
, (25)

such that the sources transform with respect to duality as an ex-
tended cocycle

(d + δ)

(
u + dzM uM + 1

2
dzN ∧ dzM uMN

+ 1

6
dzP ∧ dzN ∧ dzM uMN P

)
= 0. (26)

The extended cocycle is a cohomology class of the extended ex-
terior derivative d + δ, so one can consider the chain of co-forms
as defining a cohomology class. Since a density Lagrangian L does
not depend on anti-commuting duality parameters, it accordingly
cannot be δ-exact. However, a Lagrange density is only defined up
to a total divergence, and therefore the whole chain of co-forms is
itself only defined up to an extended co-form trivial in cohomol-
ogy. As long as the duality Ward identities are satisfied, the whole
chain of co-forms must be renormalised consistently as a single
cohomology class.

This construction is a superspace generalisation of the one de-
veloped in [39–41] in the framework of algebraic renormalisation.

Assuming the existence of a duality-invariant formulation of
the theory in superspace, the co-forms associated to the classi-
cal Lagrangian density are also expected not to depend on the
background-field prepotentials. It then follows that the chain of
co-forms associated to a duality-invariant candidate counterterm
must also be expressible in terms of the potentials (and no explicit
prepotentials).

The unique duality-invariant counterterm that can be written
as a full-superspace integral is the integral of the Kähler potential.
The associated density is not duality-invariant, but satisfies instead

δ

(
−E ln

(−i

2
(τ − τ̄ )

))
= −2hE + f E(τ + τ̄ ). (27)

One cannot rely on the variation in f because of the anomaly,
but the variation in h should be expressible as the divergence of
a quantity that does not depend on prepotentials in order for the
counterterm to be allowed. However, the scalar field τ and the
Berezinian of the supervielbein on the right-hand side of (27) can
only be expressed as total derivatives of functions depending ex-
plicitly on the hypothetical prepotentials of the theory.

This argument remains rather formal in the absence of an ex-
plicit formulation of the theory in superspace, and we shall discuss
the example of a two-dimensional non-linear sigma model over
a symmetric Kähler space with (2,2) supersymmetry (and no tor-
sion) in an accompanying paper. In this case one can work out
the algebraic renormalisation proof in full detail, and confirm that
the beta function is one-loop exact within the background field
method [42].4

7. Conclusions

In this Letter we have discussed the possible ultra-violet di-
vergences that can arise in D = 4, N = 4 supergravity at three
loops. We have argued, provided that some assumptions regard-
ing off-shell formalisms are made, that this theory should indeed
be finite at this order. The key observation is that, although the
candidate counterterms seem superficially to be D-terms, i.e. in-
tegrals over the full sixteen-theta superspace, the fact that the
volume of superspace vanishes means that there are no candidate
counterterms with manifestly duality-invariant full-superspace in-
tegrands. Instead, the relevant duality-invariant integrals can either
be written as full-superspace integrals of integrands that are not
themselves invariant, or as sub-superspace integrals of invariant
integrands, i.e. F-terms. We have called this situation the F/D bor-
derline since the status of these invariants is ambiguous. Given the
existence of suitable off-shell versions of the theories that preserve
all of the supersymmetries linearly, as well as duality, we have ar-
gued that the F-term character wins out and that these invariants
are therefore protected.

Similar arguments can be applied to D = 5 supergravity (at two
loops) and to half-maximal supergravities coupled to vector multi-
plets. In the former case, there is no anomaly and the duality sym-
metry simply consists of constant shifts of the dilaton. Since the
volume of superspace vanishes for the D = 5 half-maximal case,
it follows that a suitable full-superspace counterterm is the inte-
gral of the dilaton for which the integrand is obviously not shift-
invariant. Another simplification in D = 5 is that the preservation
of duality symmetry does not require one to relinquish mani-
fest Lorentz invariance. The addition of vector multiplets, however,
does cause more problems, particularly in D = 4. In their presence,
there is a one-loop divergence, together with more possibilities for
anomalies and the discussion of the invariants is more involved

4 In this paper it was shown that the possible logarithmic divergences beyond
one-loop must be associated to the superspace integral of functions of the target-
space Riemann tensor. For a symmetric space, such functions are constant and
integrate to zero.
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due to mixing between the gravitational and matter sectors. All of
these matters will be discussed elsewhere.

For the future, it would clearly be of interest to construct the
off-shell formalism whose existence we have relied upon in our ar-
guments, although this is not an easy problem. Whether or not this
can be done successfully, it seems difficult to imagine any purely
field-theoretic argument that could protect yet higher-loop coun-
terterms against ultra-violet divergences.5 This is because there are
no obstructions to the construction of counterterms that are full-
superspace integrals that are manifestly invariant under all sym-
metries. This being the case, there is an obvious challenge on the
computational side. If it turns out that, e.g., N = 4, D = 4 super-
gravity is finite at four loops, then all bets would be off regarding
the perturbative finiteness of N = 8 supergravity.
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