48 research outputs found
Impacts of Climate Change on Livestock Systems: What We Know and What We Don’t Know
Climate changes and the associated increases in atmospheric carbon dioxide concentration are just two of many possible future drivers of change in grassland systems and whilst there are significant uncertainties around these, they are probably more effectively characterised than many other drivers. The challenge for grasslands systems research is not so much trying to precisely predict future climate in the face of unresolvable uncertainty but rather to work with decision-makers to enhance their decisions for a range of possible climates, build their capacity to make sound risk-based and informed decisions and increase the array of options available for adaptation. There are many adaptations possible to address key climate impacts such as increased heat stress, altered pests and disease risk, vegetation change, increased risk of soil degradation and changes in forage quantity, quality and the variability of these. Many of these adaptations are extensions of existing best management practice. However, it is important to explore adaptations that are beyond incremental change to existing systems to be inclusive of more substantial systems change and even transformational changes. There is a need also to consider adaptations beyond the farm scale including in relation to value chains, institutional change and policy development. It is these areas in particular where there are likely to be increasing demands for research
Climate change impact, adaptation, and mitigation in temperate grazing systems: a review
Managed temperate grasslands occupy 25% of the world, which is 70% of global agricultural land. These lands are an important source of food for the global population. This review paper examines the impacts of climate change on managed temperate grasslands and grassland-based livestock and effectiveness of adaptation and mitigation options and their interactions. The paper clarifies that moderately elevated atmospheric CO2 (eCO2) enhances photosynthesis, however it may be restiricted by variations in rainfall and temperature, shifts in plant’s growing seasons, and nutrient availability. Different responses of plant functional types and their photosynthetic pathways to the combined effects of climatic change may result in compositional changes in plant communities, while more research is required to clarify the specific responses. We have also considered how other interacting factors, such as a progressive nitrogen limitation (PNL) of soils under eCO2, may affect interactions of the animal and the environment and the associated production. In addition to observed and modelled declines in grasslands productivity, changes in forage quality are expected. The health and productivity of grassland-based livestock are expected to decline through direct and indirect effects from climate change. Livestock enterprises are also significant cause of increased global greenhouse gas (GHG) emissions (about 14.5%), so climate risk-management is partly to develop and apply effective mitigation measures. Overall, our finding indicates complex impact that will vary by region, with more negative than positive impacts. This means that both wins and losses for grassland managers can be expected in different circumstances, thus the analysis of climate change impact required with potential adaptations and mitigation strategies to be developed at local and regional levels
The SHARP study: a quantitative and qualitative evaluation of the short-term outcomes of housing and neighbourhood renewal
<p><b>Background:</b> The SHARP study was set up to evaluate the short (1 year) and longer-term (2 year) effects on health and wellbeing of providing new social housing to tenants. This paper presents the study background, the design and methods, and the findings at one year.</p>
<p><b>Methods:</b> Data were collected from social tenants who were rehoused into a new, general-purpose socially-rented home developed and let by a Scottish Registered Social Landlord (the "Intervention" group). These data were collected at three points in time: before moving (Wave 1), one year after moving (Wave 2) and two years after moving (Wave 3). Data were collected from a Comparison group using the same methods at Baseline (Wave 1) and after two years of follow-up (Wave 3). Qualitative data were also collected by means of individual interviews. This paper presents the quantitative and qualitative findings at 1 year (after Wave 2).</p>
<p><b>Results:</b> 339 Intervention group interviews and 392 Comparison group interviews were completed. One year after moving to a new home there was a significant reduction in the proportion of Intervention group respondents reporting problems with the home, such as damp and noise. There was also a significant increase in neighbourhood satisfaction compared with Baseline (χ2 = 35.51, p < 0.0001). Many aspects of the neighbourhood improved significantly, including antisocial behaviour. In terms of environmental aspects and services the greatest improvements were in the general appearance of the area, the reputation of the area, litter and rubbish, and speeding traffic. However, lack of facilities for children/young people and lack of safe children's play areas remained a concern for tenants.</p>
<p><b>Conclusion:</b> This study found that self-reported health changed little in the first year after moving. Nonetheless, the quantitative and qualitative data point to improvements in the quality of housing and of the local environment, as well as in tenant satisfaction and other related outcomes. Further analyses will explore whether these effects are sustained, and whether differences in health outcomes emerge at 2 years compared with the Comparison group.</p>
Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations
Global disparities in SARS-CoV-2 genomic surveillance
Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity
Distinct Regulation of Host Responses by ERK and JNK MAP Kinases in Swine Macrophages Infected with Pandemic (H1N1) 2009 Influenza Virus
Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered “mixing vessels” that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2′5′-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics
Global disparities in SARS-CoV-2 genomic surveillance
Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Editing the genome of chicken primordial germ cells to introduce alleles and study gene function
With continuing advances in genome sequencing technology, the chicken genome
assembly is now better annotated with improved accuracy to the level of single
nucleotide polymorphisms. Additionally, the genomes of other birds such as the duck,
turkey and zebra finch have now been sequenced. A great opportunity exists in avian
biology to use genome editing technology to introduce small and defined sequence
changes to create specific haplotypes in chicken to investigate gene regulatory
function, and also perform rapid and seamless transfer of specific alleles between
chicken breeds. The methods for performing such precise genome editing are well
established for mammalian species but are not readily applicable in birds due to
evolutionary differences in reproductive biology.
A significant leap forward to address this challenge in avian biology was the
development of long-term culture methods for chicken primordial germ cells (PGCs).
PGCs present a cell line in which to perform targeted genetic manipulations that will
be heritable. Chicken PGCs have been successfully targeted to generate genetically
modified chickens. However, genome editing to introduce small and defined sequence
changes has not been demonstrated in any avian species. To address this deficit, the
application of CRISPR/Cas9 and short oligonucleotide donors in chicken PGCs for
performing small and defined sequence changes was investigated in this thesis.
Specifically, homology-directed DNA repair (HDR) using oligonucleotide donors
along with wild-type CRISPR/Cas9 (SpCas9-WT) or high fidelity CRISPR/Cas9
(SpCas9-HF1) was investigated in cultured chicken PGCs. The results obtained
showed that small sequences changes ranging from a single to a few nucleotides could
be precisely edited in many loci in chicken PGCs. In comparison to SpCas9-WT,
SpCas9-HF1 increased the frequency of biallelic and single allele editing to generate
specific homozygous and heterozygous genotypes. This finding demonstrates the
utility of high fidelity CRISPR/Cas9 variants for performing sequence editing with
high efficiency in PGCs.
Since PGCs can be converted into pluripotent stem cells that can potentially
differentiate into many cell types from the three germ layers, genome editing of PGCs
can, therefore, be used to generate PGC-derived avian cell types with defined genetic
alterations to investigate the host-pathogen interactions of infectious avian diseases.
To investigate this possibility, the chicken ANP32A gene was investigated as a target
for genetic resistance to avian influenza virus in PGC-derived chicken cell lines.
Targeted modification of ANP32A was performed to generate clonal lines of genome-edited
PGCs. Avian influenza minigenome replication assays were subsequently
performed in the ANP32A-mutant PGC-derived cell lines. The results verified that
ANP32A function is crucial for the function of both avian virus polymerase and
human-adapted virus polymerase in chicken cells. Importantly, an asparagine to
isoleucine mutation at position 129 (N129I) in chicken ANP32A failed to support
avian influenza polymerase function. This genetic change can be introduced into
chickens and validated in virological studies. Importantly, the results of my
investigation demonstrate the potential to use genome editing of PGCs as an approach
to generate many types of unique cell models for the study of avian biology.
Genome editing of PGCs may also be applied to unravel the genes that control the
development of the avian germ cell lineage. In the mouse, gene targeting has been
extensively applied to generate loss-of-function mouse models to use the reverse
genetics approach to identify key genes that regulate the migration of specified PGCs
to the genital ridges. Avian PGCs express similar cytokine receptors as their
mammalian counterparts. However, the factors guiding the migration of avian PGCs
are largely unknown. To address this, CRISPR/Cas9 was used in this thesis to generate
clonal lines of chicken PGCs with loss-of-function deletions in the CXCR4 and c-Kit
genes which have been implicated in controlling mouse PGC migration. The results
showed that CXCR4-deficient PGCs are absent from the gonads whereas c-Kit-deficient
PGCs colonise the developing gonads in reduced numbers and are
significantly reduced or absent from older stages. This finding shows a conserved role
for CXCR4 and c-Kit signalling in chicken PGC development. Importantly, other
genes suspected to be involved in controlling the development of avian germ cells can
be investigated using this approach to increase our understanding of avian reproductive
biology.
Finally, the methods developed in this thesis for editing of the chicken genome may
be applied in other avian species once culture methods for the PGCs from these species
are develope