126 research outputs found

    Urban Lead in Minnesota: Soil Transect Results of Four Cities

    Get PDF
    The focus of this field study was the development of a soil collection and analysis method for the rapid assessment of urban lead (Pb) buildup in four Minnesota cities, Minneapolis, St. Paul, Duluth, and Rochester. The results show that soil Pb buildup is mainly a function of urban size, although specific geographic factors, such as a bluff that constrains city development along a narrow corridor, also play a role in Pb distribution and concentration. Maximum urban Pb concentrations were approximately 25, 70, and 100 times rural soil Pb levels, in Rochester, Duluth, and the centers of Minneapolis and St. Paul respectively. The primary source of Pb measured in this study was assumed to be Pb aerosols exhausted from the use of leaded gasoline during the past four or five decades. A portion of the total state Pb exhausts were estimated for each city from state daily vehicle mile (DVM) data. The chain of movement which exposes children to excessive Pb levels from aerosol accumulations in the soil is described along with the remedy to alleviate continued urban Pb buildup

    Environmental Lead after Hurricane Katrina

    Get PDF

    Environmental Lead Risk in the Twin Cities.

    Get PDF
    Lead is an extremely toxic substance that has been used in large quantities in our technological society. Lead dust has accumulated in the soils of urban areas. In 1989 the Urban Lead Mapping Project collected soil samples from parks, playgrounds, housesides, streetsides, and midyards in the Twin Cities. The resulting maps, showing the distribution of lead dust in this urban area, are the first of their kind. They show that lead content is highest in houseside soils, particularly in inner-city neighborhoods. Parks and playgrounds in the Twin Cities are quite safe in terms of lead risk. This monograph presents the maps and summary statistics from the Urban Lead Mapping Project along with a brief explanation of the dangers of exposure to lead

    Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation

    Full text link
    In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution studies, demonstrating their effectiveness at a practical level. For the reader's convenience, we include in an appendix the corresponding treatment of the Swift-Hohenberg equation, a nonconservative counterpart of the generalized Kuramoto-Sivashinsky equation for which the nonlinear stability analysis is considerably simpler, together with numerical Evans function analyses extending spectral stability analyses of Mielke and Schneider.Comment: 78 pages, 11 figure

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    Seasonality and Children’s Blood Lead Levels: Developing a Predictive Model Using Climatic Variables and Blood Lead Data from Indianapolis, Indiana, Syracuse, New York, and New Orleans, Louisiana (USA)

    Get PDF
    On a community basis, urban soil contains a potentially large reservoir of accumulated lead. This study was undertaken to explore the temporal relationship between pediatric blood lead (BPb), weather, soil moisture, and dust in Indianapolis, Indiana; Syracuse, New York; and New Orleans, Louisiana. The Indianapolis, Syracuse, and New Orleans pediatric BPb data were obtained from databases of 15,969, 14,467, and 2,295 screenings, respectively, collected between December 1999 and November 2002, January 1994 and March 1998, and January 1998 and May 2003, respectively. These average monthly child BPb levels were regressed against several independent variables: average monthly soil moisture, particulate matter < 10 ÎŒm in diameter (PM(10)), wind speed, and temperature. Of temporal variation in urban children’s BPb, 87% in Indianapolis (R(2) = 0.87, p = 0.0004), 61% in Syracuse (R(2) = 0.61, p = 0.0012), and 59% in New Orleans (R(2) = 0.59, p = 0.0000078) are explained by these variables. A conceptual model of urban Pb poisoning is suggested: When temperature is high and evapotranspiration maximized, soil moisture decreases and soil dust is deposited. Under these combined weather conditions, Pb-enriched PM(10) dust disperses in the urban environment and causes elevated Pb dust loading. Thus, seasonal variation of children’s Pb exposure is probably caused by inhalation and ingestion of Pb brought about by the effect of weather on soils and the resulting fluctuation in Pb loading

    Case studies and evidence-based approaches to addressing urban soil lead contamination

    Get PDF
    Urban soils in many communities in the United States and internationally have been contaminated by lead (Pb) from past use of lead additives in gasoline, deterioration of exterior paint, emissions from Pb smelters and battery recycling and other industries. Exposure to Pb in soil and related dust is widespread in many inner city areas. Up to 20–40% of urban children in some neighborhoods have blood lead levels (BLLs) equal to or above 5 ÎŒg per decilitre, the reference level of health concern by the U.S. Centers for Disease Control. Given the widespread nature of Pb contamination in urban soils it has proven a challenge to reduce exposure. In order to prevent this exposure, an evidence-based approach is required to isolate or remediate the soils and prevent children and adult's ongoing exposure. To date, the majority of community soil Pb remediation efforts have been focused in mining towns or in discrete neighborhoods where Pb smelters have impacted communities. These efforts have usually entailed very expensive dig and dump soil Pb remediation techniques, funded by the point source polluters. Remediating widespread non-point source urban soil contamination using this approach is neither economical nor feasible from a practical standpoint. Despite the need to remediate/isolate urban soils in inner city areas, no deliberate, large scale, cost effective Pb remediation schemes have been implemented to isolate inner city soils impacted from sources other than mines and smelters. However, a city-wide natural experiment of flooding in New Orleans by Hurricane Katrina demonstrated that declines in soil Pb resulted in major BLL reductions. Also a growing body of literature of smaller scale pilot studies and programs does exist regarding low cost efforts to isolate Pb contaminated urban soils. This paper reviews the literature regarding the effectiveness of soil Pb remediation for reducing Pb exposure and BLL in children, and suggests best practices for addressing the epidemics of low-level Pb poisoning occurring in many inner city areas

    Langevin dynamics with dichotomous noise; direct simulation and applications

    Get PDF
    We consider the motion of a Brownian particle moving in a potential field and driven by dichotomous noise with exponential correlation. Traditionally, the analytic as well as the numerical treatments of the problem, in general, rely on Fokker-Planck description. We present a method for direct numerical simulation of dichotomous noise to solve the Langevin equation. The method is applied to calculate nonequilibrium fluctuation induced current in a symmetric periodic potential using asymmetric dichotomous noise and compared to Fokker-Planck-Master equation based algorithm for a range of parameter values. Our second application concerns the study of resonant activation over a fluctuating barrier.Comment: Accepted in Journal of Statistical Mechanics: Theory and Experimen
    • 

    corecore