2,302 research outputs found

    Phase separation on a hyperbolic lattice

    Get PDF
    We report a preliminary numerical study by kinetic Monte Carlo simulation of the dynamics of phase separation following a quench from high to low temperature in a system with a single, conserved, scalar order parameter (a kinetic Ising ferromagnet) confined to a hyperbolic lattice. The results are compared with simulations of the same system on two different, Euclidean lattices, in which cases we observe power-law domain growth with an exponent near the theoretically known value of 1/3. For the hyperbolic lattice we observe much slower domain growth, consistent to within our current accuracy with power-law growth with a much smaller exponent near 0.13. The paper also includes a brief introduction to non-Euclidean lattices and their mapping to the Euclidean plane.Comment: Computer Simulation Studies in Condensed Matter Physics 26 (CSP13), Edited by D.P. Landau, S.P. Lewis, H.-B. Schuttle

    Moral Education for Structural Change

    Get PDF
    The experience of the education for the social responsibility program at the University of ConcepciĂłn suggests the viability of large-scale moral education forming a functional, realistic, and socially unifying ethical conscience. Three educational principles supported by scientific findings are proposed to guide moral education: understanding, participation, and empathy from experience. Taking as an example the 'structural trap' by which the good intention of complying with social human rights such as health, ends up discouraging economic investment, it is suggested that good large scale moral education is capable of facilitating the overcoming of structural obstacles to solutions to social and ecological problems

    Step Position Distributions and the Pairwise Einstein Model for Steps on Crystal Surfaces

    Full text link
    The Pairwise Einstein Model (PEM) of steps not only justifies the use of the Generalized Wigner Distribution (GWD) for Terrace Width Distributions (TWDs), it also predicts a specific form for the Step Position Distribution (SPD), i.e., the probability density function for the fluctuations of a step about its average position. The predicted form of the SPD is well approximated by a Gaussian with a finite variance. However, the variance of the SPD measured from either real surfaces or Monte Carlo simulations depends on Δy\Delta y, the length of step over which it is calculated, with the measured variance diverging in the limit Δy→∞\Delta y \to \infty. As a result, a length scale LWL_{\rm W} can be defined as the value of Δy\Delta y at which the measured and theoretical SPDs agree. Monte Carlo simulations of the terrace-step-kink model indicate that LW≈14.2ΟQL_{\rm W} \approx 14.2 \xi_Q, where ΟQ\xi_Q is the correlation length in the direction parallel to the steps, independent of the strength of the step-step repulsion. LWL_{\rm W} can also be understood as the length over which a {\em single} terrace must be sampled for the TWD to bear a "reasonable" resemblence to the GWD.Comment: 4 pages, 3 figure

    Analysis of innate and acquired resistance to anti-CD20 antibodies in malignant and nonmalignant B cells

    Get PDF
    The anti-CD20 monoclonal antibody, rituximab, provides a significant therapeutic benefit for patients with B-cell disorders. However, response to therapy varies and relapses are common, so an understanding of both inherited and acquired rituximab resistance is needed. In order to identify mechanisms of inherited resistance, sensitive versus resistant individuals were selected from a survey of 92 immortalized lymphoblastoid B-cell lines from normal individuals. Levels of CD20 protein and surface expression were lower in the resistant group. In contrast, CD20 mRNA levels were not correlated with susceptibility, suggesting regulation at a post-transcriptional level. To examine acquired resistance, resistant sublines were selected from both lymphoblastoid as well as lymphoma cell lines. Confirming previous findings, there was significant down-regulation of CD20 protein expression in all the resistant sublines. CD20 mRNA splice variants are reported to be associated with development of resistance. Three splice variants were observed in our cell lines, each lacking the binding epitope for rituximab, but none were associated with rituximab resistance. The second generation anti-CD20 mAb, ofatumumab, was more active compared with rituximab in vitro in the survey of all B-cell lines, mirroring results that have been reported previously with malignant B-cells. These studies show that normal B-lymphoblastoid cell lines can be used to model both innate and acquired mechanisms of resistance. They validate the important role of CD20 expression and enable future genetic studies to identify additional mediators of anti-CD20 mAb resistance

    19F NMR spectroscopy monitors ligand binding to recombinantly fluorine-labelled b'x from human protein disulphide isomerase (hPDI)

    Get PDF
    We report a protein-observe (19)F NMR-based ligand titration binding study of human PDI b'x with ?-somatostatin that also emphasises the need to optimise recombinant protein fluorination when using 5- or 6-fluoroindole. This study highlights a recombinant preference for 5-fluoroindole over 6-fluoroindole; most likely due to the influence of fluorine atomic packing within the folded protein structure. Fluorination affords a single (19)F resonance probe to follow displacement of the protein x-linker as ligand is titrated and provides a dissociation constant of 23 ± 4 ?M

    Extrapolation-CAM Theory for Critical Exponents

    Full text link
    By intentionally underestimating the rate of convergence of exact-diagonalization values for the mass or energy gaps of finite systems, we form families of sequences of gap estimates. The gap estimates cross zero with generically nonzero linear terms in their Taylor expansions, so that Îœ=1\nu = 1 for each member of these sequences of estimates. Thus, the Coherent Anomaly Method can be used to determine Îœ\nu. Our freedom in deciding exactly how to underestimate the convergence allows us to choose the sequence that displays the clearest coherent anomaly. We demonstrate this approach on the two-dimensional ferromagnetic Ising model, for which Îœ=1\nu = 1. We also use it on the three-dimensional ferromagnetic Ising model, finding Μ≈0.629\nu \approx 0.629, in good agreement with other estimates.Comment: 21 pages, Submitted to Journal of Physics A; new section added discussing rate of convergence and relation to Finite-Size Scalin

    Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals

    Get PDF
    Photonic structures can be designed to tailor luminescence properties of materials, which becomes particularly interesting for non-linear phenomena, such as photon upconversion. However, there is no adequate theoretical framework to optimize photonic structure designs for upconversion enhancement. Here, we present a comprehensive theoretical model describing photonic effects on upconversion and confirm the model’s predictions by experimental realization of 1D-photonic upconverter devices with large statistics and parameter scans. The measured upconversion photoluminescence enhancement reaches 82 ± 24% of the simulated enhancement, in the mean of 2480 separate measurements, scanning the irradiance and the excitation wavelength on 40 different sample designs. Additionally, the trends expected from the modeled interaction of photonic energy density enhancement, local density of optical states and internal upconversion dynamics, are clearly validated in all experimentally performed parameter scans. Our simulation tool now opens the possibility of precisely designing photonic structure designs for various upconverting materials and applications

    High-excitation OH and H_2O lines in Markarian 231: the molecular signatures of compact far-infrared continuum sources

    Full text link
    The ISO/LWS far-infrared spectrum of the ultraluminous galaxy Mkn 231 shows OH and H_2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 micron and [C II] 158 micron lines. Our analysis shows that OH and H_2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (T_dust=70-100 K), optically thick (tau_100micron=1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity L_IR, the observed OH and H2O high-lying lines arise from a luminous (L/L_IR~0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH)>~10^{17} cm^{-2} and N(H_2O)>~6x10^{16} cm^{-2} may indicate XDR chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 micron, and [O I] 63 micron lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mkn 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields

    Full text link
    An important aspect of real ferromagnetic particles is the demagnetizing field resulting from magnetostatic dipole-dipole interaction, which causes large particles to break up into domains. Sufficiently small particles, however, remain single-domain in equilibrium. This makes such small particles of particular interest as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to study the effect of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems. For systems in the ``Stochastic Region,'' where magnetization switching is on average effected by the nucleation and growth of fewer than two well-defined critical droplets, the simulation results can be explained by the dynamics of a simple model in which the free energy is a function only of magnetization. In the ``Multi-Droplet Region,'' a generalization of Avrami's Law involving a magnetization-dependent effective magnetic field gives good agreement with our simulations.Comment: 29 pages, REVTeX 3.0, 10 figures, 2 more figures by request. Submitted Phys. Rev.
    • 

    corecore