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Abstract

We report a preliminary numerical study by kinetic Monte Carlo simulation of the dynamics of phase separation

following a quench from high to low temperature in a system with a single, conserved, scalar order parameter (a kinetic

Ising ferromagnet) confined to a hyperbolic lattice. The results are compared with simulations of the same system

on two different, Euclidean lattices, in which cases we observe power-law domain growth with an exponent near the

theoretically known value of 1/3. For the hyperbolic lattice we observe much slower domain growth, consistent to

within our current accuracy with power-law growth with a much smaller exponent near 0.13. The paper also includes

a brief introduction to non-Euclidean lattices and their mapping to the Euclidean plane.
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1. Introduction

The geometry most familiar to condensed-matter physicists is the Euclidean one with its vanishing Gaussian

curvature [1]. The circumference and area of a circle of radius ρ in the Euclidean plane are the well-known power

laws, C(ρ) = 2πρ and A(ρ) =
∫ ρ

0
C(r)dr = πρ2, respectively. Almost equally familiar are elliptic or spherical surfaces,

exemplified in the macroscopic world by the Earth’s surface and in the nanoscopic world by carbon buckyballs. These

closed surfaces have positive Gaussian curvature, κ > 0. Hereafter using dimensionless units such that |κ| = 1, the

circular circumference and area are analogously given by C(ρ) = 2π sin ρ and A(ρ) = 2π(1 − cos ρ).
More exotic to most is probably the hyperbolic geometry with its negative Gaussian curvature, κ < 0. In this

case the dimensionless circular circumference and area are exponentially divergent: C(ρ) = 2π sinh ρ and A(ρ) =
2π(cosh ρ − 1). The best known example is the Minkowski metric of relativistic spacetime. However, hyperbolic

surfaces have recently been studied in nanoscience as well, including junctions of several carbon nanotubes [2] and

anisotropic lipid membranes [3]. Percolation on hyperbolic lattices has also been studied [4].

In this paper we present preliminary results on a comparison of the dynamics of pattern formation during phase

separation (spinodal decomposition) in media confined to Euclidean and hyperbolic surfaces. As our example we use

an S = 1/2 ferromagnetic Ising model on a regular lattice embedded in the surface, and we study the time evolution

of the characteristic pattern length following a quench from infinite temperature to one well below the model’s critical

temperature.

The rest of the paper is organized as follows. In Sec. 2 we describe the Poincaré disk mapping used to map

patterns on a hyperbolic surface onto a Euclidean plane. Next, in Sec. 3, we describe the lattices generated by regular

tesselations of Euclidean, spherical, and hyperbolic surfaces. The phenomenology of phase separation is briefly

reviewed in Sec. 4, and the methods of simulation and data analysis are discussed in Sec. 5. Our numerical results are

presented in Sec. 6, and a final discussion and suggestions for future work are given in Sec. 7.
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Figure 1: The Poincaré disk mappings from a unit hyperboloid of revolution (κ = −1) and a unit sphere (κ = +1) to a Euclidean plane. The y
coordinate points into the page and has been suppressed in our notation, describing the position of a point as (x, u). See discussion in Sec. 2.

2. Poincaré disk mapping of non-Euclidean surfaces

Patterns on a non-Euclidean surface cannot be reproduced on a Euclidean surface without distortion; angular,

linear, or both. No single rendering is ideal in every respect, as evidenced by the many different geographic map

projections developed over the centuries. The projection of the hyperbolic plane that we use in this paper is known as

the Poincaré disk mapping and is illustrated in Fig. 1. It consists of a Euclidean plane, a unit sphere (κ = +1), and a unit

hyperboloid of revolution (κ = −1) [5]. The plane forms the equatorial plane of the sphere, and the hyperboloid rests

with its apex on the North Pole of the sphere, (0,1). A straight line through the South Pole, (0,−1), connects the points

H on the hyperboloid and S on the sphere with their mapping D on the plane. The region of the equatorial plane inside

the sphere is the Poincaré disk. It is easily seen from Fig. 1 that an arbitrary point H on the hyperboloid is mapped

inside the Poincaré disk, leading in the map to an exponential contraction of lengths far away from the apex of the

hyperbola. The mapping from H to D is conformal (angle-preserving), and geodesics on the hyperboloid are mapped

onto circles on the disk that meet its edge at straight angles. A little calculus shows that the “hyperbolic radius” of

H, ρH, is the arc length of the geodesic from (0,1) to H, calculated with the Minkowski metric, ds =
√

dx2 − du2.

(Analogously, the “spherical radius” of S, ρS, is the arc length of the geodesic from (0,1) to S, calculated with the

Euclidean metric, ds =
√

dx2 + du2.) Other equations relevant to the mappings are included in Fig. 1.

3. Euclidean, elliptic, and hyperbolic lattices

To construct lattices embedded in Euclidean and non-Euclidean surfaces, we consider regular tessellations of such

surfaces by regular polygons. A lattice created by this procedure, such that q regular p-gons meet at every lattice site

is characterized by its Schläffli symbol, {p, q} [4]. A lattice of finite size is often denoted by the amended Schläffli

symbol, {p, q,R}, where R is the number of concentric layers of p-gons surrounding the central site. The only three

regular tessellations of the Euclidean plane are shown in Fig. 2. Any regular p-gon can be decomposed into p isosceles
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Figure 2: The three regular Euclidean lattices {p, q} of q p-gons meeting at each lattice site. Here, each is shown with r = 2 layers of polygons:

{3, 6, 2}, {4, 4, 2}, and {6, 3, 2}. The {3, 6} and {6, 3} lattices are each other’s duals, while {4, 4} is self-dual.

triangles that meet at its centroid. This is not only true for Euclidean lattices. An illustration for the hyperbolic case

is shown in Fig. 3. Each triangle has apex angle θ and basal angles φ/2.

Figure 3: Splitting a hyperbolic pentagon into five isosceles triangles.

For the Euclidean plane, the interior angles of a triangle must always sum to π. Thus,

2π/p + 2π/q = π⇔ (p − 2)(q − 2) = 4 . (1)

This proves that the only combinations of integer p and q compatible with Euclidean geometry are {3, 6}, {4, 4}, and

{6, 3}.
Similarly, for the elliptic plane,

2π/p + 2π/q > π⇔ (p − 2)(q − 2) < 4 . (2)

Again it is clear that the number of possible regular tessellations is finite. In fact, they correspond to the five Platonic

solids, {3, 3}, {3, 4}, {3, 5}, {4, 3}, and {5, 3} [6].

For the hyperbolic plane, on the other hand,

2π/p + 2π/q < π⇔ (p − 2)(q − 2) > 4 . (3)

Consequently, the number of possible regular tessellations is infinite. Some examples are shown in Figs. 4 and 5.

As the size of the lattice increases, embedding without overlaps into a three-dimensional Euclidean space becomes

impossible. Fascinating images of models of hyperbolic planes created by crocheting can be found in Ref. [7].
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Figure 4: Some examples of the infinite number of hyperbolic lattices, projected onto the Poincaré disk. The exponential length contraction in the

projected image of large ρH is clearly evident. As for the Euclidean and elliptic geometries, {p, q} and {q, p} are duals.

Figure 5: Perspective image of a small {3, 7, 4} lattice embedded in a three-dimensional Euclidean space. The exponential divergence of the

hyperbolic circumference with radius prohibits such embedding without overlaps for large lattices.

4. Phase separation

Phase separation occurs when a binary mixture is quenched from a high temperature into the phase-coexistence

region below its critical temperature. As coherent regions of the two coexisting phases form and grow after the quench,

the length scale characterizing the typical domain size increases algebraically with time as

ξ ∼ tn . (4)

The growth exponent n depends on the symmetries and conservation laws governing the dynamics. For the case of

two-phase coexistence and a constant ratio of the volumes of the two phases, n = 1/3. This situation is known in the

terminology of critical dynamics as Lifshitz-Slyozov dynamics [8] or Model B [9]. However, these results implicitly

assume a Euclidean geometry, and we are not aware that the prediction has yet been tested in the hyperbolic case. A

numerical test is the purpose of the work presented here.
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Figure 6: Snapshots of the {3, 6, 60} (left) and {3, 7, 8} lattices (right) in their initial, disordered states and at times near the end of the simulation

runs. T = 2.0, in both cases well below Tc. Small thermal fluctuations in the bulk phases are noticeable for the {3, 6} case.

5. Simulation and data analysis

We consider the phase separation that occurs when a S = 1/2 Ising ferromagnet with spins si = ±1 placed at

the vertices of the {p, q} lattice is quenched from a high temperature to one well below its critical temperature. The

Hamiltonian is given by

H = −J
∑

〈i, j〉
sis j . (5)

Here, J > 0 is the ferromagnetic interaction constant, and the sum runs over all nearest-neighbor pairs. The coordina-

tion number in a {p, q} lattice is q. We will use units such that Boltzmann’s constant and J both equal unity.

While the phase transition at the critical temperature Tc for this model on Euclidean lattices belongs to the two-

dimensional Ising universality class, on hyperbolic lattices it belongs to the mean-field universality class [10, 11]. In

either case, the value of Tc increases with q. (Tc = 2/ ln(1 +
√

2) ≈ 2.269 for {4, 4}, 4/ ln 3 ≈ 3.641 for {3, 6}, and

≈ 5.5 for {3, 7} [11].) To minimize surface effects, we use periodic boundary conditions for the two Euclidean lattices.

Unfortunately we are not aware of a method for doing so in the hyperbolic case, and consequently we simulate the

{3, 7} lattice with free boundary conditions.

The initial state is a random distribution of up and down spins, subject only to the constraint of a vanishing order

parameter,
∑

i si = 0. The time evolution is obtained from a kinetic Monte Carlo (MC) simulation by the order-

parameter conserving Kawasaki dynamics [12]. This algorithm consists in randomly choosing a nearest-neighbor

spin pair and checking if the two spins are different. If they are equal, a different pair is chosen. If the spins are

different, they are exchanged with the Metropolis probability,

Pex(si, s j) = min[1, exp(−ΔE/T )] , (6)

where ΔE is the energy change that would result from a successful spin exchange. In a system consisting of N spins,

N random choices of a spin pair constitute the MC time unit, one MC step per spin (one MCSS). Snapshots of the

{3, 6} and {3, 7} lattices in their initial, disordered states and at t = 106 MCSS, when macroscopic bulk phase domains

are well developed, are shown in Fig. 6.

The power-law result for the characteristic length scale given in Eq. (4) assumes an isotropic system with sharp

interfaces and no thermal fluctuations in the bulk phase regions. Neither assumption is well satisfied for discrete Ising

models at nonzero temperature. Care must therefore be exercised in extracting the relevant, growing length scale from

the simulated spin configurations. Here we calculate the two-point correlation function, G(r) = 〈s(ri)s(ri + r)〉, where

ri is the position of lattice point i, and ri+ r is the position of a lattice point a distance r away from i. Here, r is defined

as the shortest path between two lattice points along the edges (“taxicab” or “Manhattan” distance). The correlation

length ξ(t) is estimated as the first zero crossing of G(r) at time t. See Fig. 7. To reduce the effect on the estimate of

thermal fluctuations in the bulk phases, we perform the simulations at relatively low temperatures, compared to Tc. In

calculating the correlation functions we also ignore isolated single spins and spin pairs [13], which otherwise could

distort G(r) for r = 1 and 2, as seen in Fig. 7.
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Figure 7: The spin correlation function G(r) for a {3, 7, 7} lattice at different times. The correlation length ξ(t) is estimated as the distance

corresponding to the first zero crossing of G(r), as discussed in the text.

6. Numerical results

The main numerical results of this study are summarized in Figs. 8 and 9. Figure 8 shows the length scale ξ as

a function of time for each of the three studied lattices, following a quench to T = 2.0. The data sets were averaged

over 1,500 independent simulation runs for the Euclidean lattices, and 1000 runs for the hyperbolic lattice. Results

are included, both based on the raw data, and with thermal fluctuations filtered out as discussed above. Significant

differences are only observed for {4, 4}, for which the quench temperature is not very far below Tc. The growth

exponents are here estimated by three-parameter, nonlinear fits to the time series, with the results given in the figure

legends. For both the Euclidean lattices, the growth exponent comes out as n ≈ 0.3, consistent with the expected value

of 1/3. For the hyperbolic {3, 7} lattice, however, the effective exponent is significantly lower, only about 0.13.

In Fig. 9 we show results obtained by a different way of estimating the exponents. The data were divided into

bins, each containing twice as many data points as the previous one (“octave binning”). We then performed a linear

least-squares fit to log10 ξ versus log10 t in each successive pair of bins. Subtraction of a constant background was

adjusted so that the estimated exponents became roughly independent of t. The resulting exponent estimates are seen

to be consistent with those obtained by nonlinear fitting over the entire time interval.

It is reasonable to ask whether the much lower effective growth exponent obtained for the hyperbolic lattice might

be a result of finite-size saturation of the length scale. To check this possibility, we also performed simulations for

smaller {3, 7} lattices with R between 3 and 6. As seen in Fig. 10, saturation does not appear to set in earlier than 106

MCSS, even for a system as small as R = 6.

7. Discussion

Here we have reported a preliminary, numerical investigation of the dynamics of phase separation in a model with

a single, conserved, scalar order parameter (Model B) confined to the vertices of a lattice obtained as a regular tiling

of a hyperbolic plane. The results are compared with those obtained for the same model on two different Euclidean

lattices. The latter show power-law domain growth with an exponent of approximately 0.3, near the theoretical result

of 1/3, which is valid for the limiting case of an isotropic continuum system at zero temperature. Considering that the

simulations were performed for anisotropic, discrete systems at a finite temperature, this agreement is convincing.

However, for the hyperbolic {3, 7} lattice with R up to 8, we observe much slower growth, consistent with a power

law with an effective exponent of about 0.13. Whether or not this is indeed power-law growth or something else, we

leave open for future, theoretical investigation. The effect is possibly related to the fact that for large R, most of the
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Figure 8: Simulation data for the correlation length ξ (solid curves), together with three-parameter nonlinear fits (dashed curves), shown versus

time t for lattices {4, 4, 60} (14,400 sites), {3, 6, 60} (10,800 sites), and {3, 7, 8} (11,173 sites). Linear scale (a) and log-log scale (b). In the legends,

“raw” refers to data not corrected for thermal fluctuations, and “smoothed” refers to data with thermal fluctuations filtered out as discussed in the

text. The filtered data give an estimate of the growth exponent of n ≈ 0.3 for the Euclidean lattices, compatible with the theoretical value n = 1/3.

However, the effective exponent obtained for the hyperbolic lattice is much lower: approximately 0.13.

spins are located near the free surface. It may also be related to the mean-field nature of the phase transition at Tc in

the hyperbolic case, which indicates the existence of effective long-range interactions.

For the future we also leave a numerical investigation of phase ordering with non-conserved order parameter

(Model A [9]) on hyperbolic lattices. In this case, the growth exponent in the Euclidean case is known to be 1/2.
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