33,174 research outputs found

    Markov Process of Muscle Motors

    Full text link
    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.Comment: 10 page

    Patient-oriented and performance-based outcomes after knee autologous chondrocyte implantation: a timeline for the first year of recovery

    Get PDF
    It is well established that autologous chondrocyte implantation (ACI) can require extended recovery postoperatively; however, little information exists to provide clinicians and patients with a timeline for anticipated function during the first year after ACI. Objective: To document the recovery of functional performance of activities of daily living after ACI. Patients: ACI patients (n = 48, 29 male 35.1 ± 8.0 y). Intervention: All patients completed functional tests (weight-bearing squat, walk-across, sit-to-stand, step-up/over, and forward lunge) using the NeuroCom long force plate (Clackamas, OR) and completed patient-reported outcome measures (International Knee Documentation Committee Subjective Knee Evaluation Form, Lysholm, Western Ontario and McMaster Osteoarthritis Index WOMAC, and 36-Item Short-Form Health Survey) preoperatively and 3, 6, and 12 mo postoperatively. Main Outcome Measures: A covariance pattern model was used to compare performance and self-reported outcome across time and provide a timeline for functional recovery after ACI. Results: Participants demonstrated significant improvement in walk-across stride length from baseline (42.0% ± 8.9% height) at 6 (46.8% ± 8.1%) and 12 mo (46.6% ± 7.6%). Weight bearing on the involved limb during squatting at 30°, 60°, and 90° was significantly less at 3 mo than presurgery. Step-up/over time was significantly slower at 3 mo (1.67 ± 0.69 s) than at baseline (1.49 ± 0.33 s), 6 mo (1.51 ± 0.36 s), and 12 mo (1.40 ± 0.26 s). Step-up/over lift-up index was increased from baseline (41.0% ± 11.3% body weight BW) at 3 (45.0% ± 11.7% BW), 6 (47.0% ± 11.3% BW), and 12 mo (47.3% ± 11.6% BW). Forward-lunge time was decreased at 3 mo (1.51 ± 0.44 s) compared with baseline (1.39 ± 0.43 s), 6 mo (1.32 ± 0.05 s), and 12 mo (1.27 ± 0.06). Similarly, forward-lunge impact force was decreased at 3 mo (22.2% ± 1.4% BW) compared with baseline (25.4% ± 1.5% BW). The WOMAC demonstrated significant improvements at 3 mo. All patient-reported outcomes were improved from baseline at 6 and 12 mo postsurgery. Conclusions: Patients' perceptions of improvements may outpace physical changes in function. Decreased function for at least the first 3 mo after ACI should be anticipated, and improvement in performance of tasks requiring weight-bearing knee flexion, such as squatting, going down stairs, or lunging, may not occur for a year or more after surgery

    Internal Motility in Stiffening Actin-Myosin Networks

    Full text link
    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.Comment: 4 pages, 3 figure

    Psychiatric genetics and the structure of psychopathology

    Get PDF
    For over a century, psychiatric disorders have been defined by expert opinion and clinical observation. The modern DSM has relied on a consensus of experts to define categorical syndromes based on clusters of symptoms and signs, and, to some extent, external validators, such as longitudinal course and response to treatment. In the absence of an established etiology, psychiatry has struggled to validate these descriptive syndromes, and to define the boundaries between disorders and between normal and pathologic variation. Recent advances in genomic research, coupled with large-scale collaborative efforts like the Psychiatric Genomics Consortium, have identified hundreds of common and rare genetic variations that contribute to a range of neuropsychiatric disorders. At the same time, they have begun to address deeper questions about the structure and classification of mental disorders: To what extent do genetic findings support or challenge our clinical nosology? Are there genetic boundaries between psychiatric and neurologic illness? Do the data support a boundary between disorder and normal variation? Is it possible to envision a nosology based on genetically informed disease mechanisms? This review provides an overview of conceptual issues and genetic findings that bear on the relationships among and boundaries between psychiatric disorders and other conditions. We highlight implications for the evolving classification of psychopathology and the challenges for clinical translation

    Persistence in the zero-temperature dynamics of the QQ-states Potts model on undirected-directed Barab\'asi-Albert networks and Erd\"os-R\'enyi random graphs

    Full text link
    The zero-temperature Glauber dynamics is used to investigate the persistence probability P(t)P(t) in the Potts model with Q=3,4,5,7,9,12,24,64,128Q=3,4,5,7,9,12,24,64, 128, 256,512,1024,4096,16384256, 512, 1024,4096,16384 ,..., 2302^{30} states on {\it directed} and {\it undirected} Barab\'asi-Albert networks and Erd\"os-R\'enyi random graphs. In this model it is found that P(t)P(t) decays exponentially to zero in short times for {\it directed} and {\it undirected} Erd\"os-R\'enyi random graphs. For {\it directed} and {\it undirected} Barab\'asi-Albert networks, in contrast it decays exponentially to a constant value for long times, i.e, P()P(\infty) is different from zero for all QQ values (here studied) from Q=3,4,5,...,230Q=3,4,5,..., 2^{30}; this shows "blocking" for all these QQ values. Except that for Q=230Q=2^{30} in the {\it undirected} case P(t)P(t) tends exponentially to zero; this could be just a finite-size effect since in the other "blocking" cases you may have only a few unchanged spins.Comment: 14 pages, 8 figures for IJM

    First Stereoscopic Coronal Loop Reconstructions from Stereo Secchi Images

    Full text link
    We present the first reconstruction of the three-dimensional shape of magnetic loops in an active region from two different vantage points based on simultaneously recorded images. The images were taken by the two EUVI telescopes of the SECCHI instrument onboard the recently launched STEREO spacecraft when the heliocentric separation of the two space probes was 12 degrees. We demostrate that these data allow to obtain a reliable three-dimensional reconstruction of sufficiently bright loops. The result is compared with field lines derived from a coronal magnetic field model extrapolated from a photospheric magnetogram recorded nearly simultaneously by SOHO/MDI. We attribute discrepancies between reconstructed loops and extrapolated field lines to the inadequacy of the linear force-free field model used for the extrapolation.Comment: 6 pages, 5 figure
    corecore