3,010 research outputs found

    Friction and wear of plasma-deposited diamond films

    Get PDF
    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen

    Working Partnerships, Partnerships Working

    Get PDF
    Involvement in community partnerships at Virginia Commonwealth University has its roots in the institution\u27s history. The Medical College of Virginia, founded in1838, and the Richmond Professional Institute, founded in 1917, both sought to extend knowledge into the community to change peoples\u27 lives for the better. Today, the VCU campuses are even more entwined with the City of Richmond -- physically, and increasingly so as a partner in the economic and social challenges and opportunities facing the City

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure

    Zn3As2 Nanowires and nanoplatelets: highly efficient infrared emission and photodetection by an earth abundant material

    No full text
    The development of earth abundant materials for optoelectronics and photovoltaics promises improvements in sustainability and scalability. Recent studies have further demonstrated enhanced material efficiency through the superior light management of novel nanoscale geometries such as the nanowire. Here we show that an industry standard epitaxy technique can be used to fabricate high quality II-V nanowires (1D) and nanoplatelets (2D) of the earth abundant semiconductor Zn3As2. We go on to establish the optoelectronic potential of this material by demonstrating efficient photoemission and detection at 1.0 eV, an energy which is significant to the fields of both photovoltaics and optical telecommunications. Through dynamical spectroscopy this superior performance is found to arise from a low rate of surface recombination combined with a high rate of radiative recombination. These results introduce nanostructured Zn3As2 as a high quality optoelectronic material ready for device exploration.T.B., P.C., Y.G., H.H.T., and C.J. acknowledge the Australian Research Council. T.B., P.C., Y.G., H.H.T., and C.J. thank the Australian National Fabrication Facility for access to the growth and microscopy facilities and Centre for Advanced Microscopy and Australian Microscopy and Microanalysis Research Facility for access to microscopy facilities used in this work. Y.W., B.B., H.E.J., and L.M.S. acknowledge the financial support of the National Science Foundation through grants DMR-1105362, 1105121, and ECCS-1100489

    Characterizing [C II] Line Emission In Massive Star Forming Clumps

    Full text link
    Because the 157.74 micron [C II] line is the dominant coolant of star-forming regions, it is often used to infer the global star-formation rates of galaxies. By characterizing the [C II] and far-infrared emission from nearby Galactic star-forming molecular clumps, it is possible to determine whether extragalactic [C II] emission arises from a large ensemble of such clumps, and whether [C II] is indeed a robust indicator of global star formation. We describe [C II] and far-infrared observations using the FIFI-LS instrument on the SOFIA airborne observatory toward four dense, high-mass, Milky Way clumps. Despite similar far-infrared luminosities, the [C II] to far-infrared luminosity ratio, L([C II])/L(FIR) varies by a factor of at least 140 among these four clumps. In particular, for AGAL313.576+0.324, no [C II] line emission is detected despite a FIR luminosity of 24,000 L_sun. AGAL313.576+0.324 lies a factor of more than 100 below the empirical correlation curve between L([C II])/L(FIR) and S_\nu (63 micron)/S_\nu (158 micron) found for galaxies. AGAL313.576+0.324 may be in an early evolutionary "protostellar" phase with insufficient ultraviolet flux to ionize carbon, or in a deeply embedded ``hypercompact' H II region phase where dust attenuation of UV flux limits the region of ionized carbon to undetectably small volumes. Alternatively, its apparent lack of \cii\, emission may arise from deep absorption of the \cii\, line against the 158 micron continuum, or self-absorption of brighter line emission by foreground material, which might cancel or diminish any emission within the FIFI-LS instrument's broad spectral resolution element (~250 km/s
    • …
    corecore