1,765 research outputs found

    An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate

    Get PDF
    Understanding the potential thermal hazards of lithium-ion batteries (LIBs) during thermal runaway (TR) is helpful to assess the safety of LIB during storage, transport and use. This paper presents a comprehensive analysis of the thermal runaway (TR) characteristics of type 21700 cylindrical LIBs with a specific energy of 266 W∙h/kg. The batteries with both 30% state of charge (SOC) and 100% SOC were triggered to TR by uniform heating using a flexible heater in a laboratory environment. Three high definition cameras and one high-speed camera were placed to capture TR behavior and flame evolution from different viewpoints. Correlation between the heat release rate (HRR) and the mean flame height of turbulent jet diffusion flame were used to estimate the HRRs of LIBs. Additional characteristics of cell failure (for cells with 100% and 30% SOC) were also noted for comparison, including: number of objects ejected from the cell; sparks and subsequent jet fires. An approach has been developed to estimate the HRRs from TR triggered fires and results compared with previous HRR measurements for type 18650 cylindrical cells with a similar cathode composition

    A simplified mathematical model for heating-induced thermal runaway of lithium-ion batteries

    Get PDF
    The present study aims to develop a simplified mathematical model for the evolution of heating-induced thermal runaway (TR) of lithium-ion batteries (LIBs). This model only requires a minimum number of input parameters, and some of these unknown parameters can be obtained from accelerating rate calorimeter (ARC) tests and previous studies, removing the need for detailed measurements of heat flow of cell components by differential scanning calorimetry. The model was firstly verified by ARC tests for a commercial cylindrical 21700 cell for the prediction of the cell surface temperature evolution with time. It was further validated by uniform heating tests of 21700 cells conducted with flexible and nichrome-wire heaters, respectively. The validated model was finally used to investigate the critical ambient temperature that triggers battery TR. The predicted critical ambient temperature is between 127 °C and 128 °C. The model has been formulated as lumped 0D, axisymmetric 2D and full 3D to suit different heating and geometric arrangements and can be easily extended to predict the TR evolution of other LIBs with different geometric configurations and cathode materials. It can also be easily implemented into other computational fluid dynamics (CFD) code

    Characterizing and predicting 21700 NMC lithium-ion battery thermal runaway induced by nail penetration

    Get PDF
    Combined numerical and experimental studies are conducted to characterise 21700 cylindrical lithium-ion battery (LIB) thermal runaway (TR) induced by nail penetration. Both radial and axial penetrations are considered for 4.8 Ah 21700 NMC cell under 100% state of charge. Heat generation from the decomposition of the cell component materials are analysed. The maximum cell surface temperature rise and time to reach it in both types of penetration tests are compared. Snapshots from the video footages captured by three high definition and one high speed cameras shade light on the dynamic processes of spark ejection and flame evolution. A generic predictive tool is developed within the frame of the in-house version of open-source computational fluid dynamics code OpenFOAM for nail induced TR. The code treats the cell as a lumped block with anisotropic thermal conductivities and considers heat generation due to nail induced internal short circuit resistance, exothermic decomposition reactions and heat dissipation through convective and radiative heat transfer. Validation with the current measurements shows promising agreement. The predictions also provide insight on the magnitudes of heat generation due to internal short circuit resistance, decompositions of solid electrolyte interphase layer (SEI), anode, cathode and electrolyte. Parametric studies further quantify the effects of cell internal short circuit resistance, contact resistance between the nail and cell, convective heat transfer coefficient and cell surface emissivity on TR evolution

    Tropical montane cloud forest: Environmental drivers of vegetation structure and ecosystem function

    Get PDF
    Abstract:Tropical montane cloud forests (TMCF) are characterized by short trees, often twisted with multiple stems, with many stems per ground area, a large stem diameter to height ratio, and small, often thick leaves. These forests exhibit high root to shoot ratio, with a moderate leaf area index, low above-ground production, low leaf nutrient concentrations and often with luxuriant epiphytic growth. These traits of TMCF are caused by climatic conditions not geological substrate, and are particularly associated with frequent or persistent fog and low cloud. There are several reasons why fog might result in these features. Firstly, the fog and clouds reduce the amount of light received per unit area of ground and as closed-canopy forests absorb most of the light that reaches them the reduction in the total amount of light reduces growth. Secondly, the rate of photosynthesis per leaf area declines in comparison with that in the lowlands, which leads to less carbon fixation. Nitrogen supply limits growth in several of the few TMCFs where it has been investigated experimentally. High root : shoot biomass and production ratios are common in TMCF, and soils are often wet which may contribute to N limitation. Further study is needed to clarify the causes of several key features of TMCF ecosystems including high tree diameter : height ratio.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S026646741500017

    Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse

    Get PDF
    Combined numerical and experimental studies have been carried out to investigate thermal runaway (TR) of large format 21700 cylindrical lithium-ion battery (LIB) induced by different thermal abuse. Experiments were firstly conducted with the Extend Volume Accelerating Calorimetry (EV-ARC) using both the heat-wait-seek (HWS) protocol and under isothermal conditions. The kinetic parameters were derived from one of the HWS EV-ARC tests and implemented in the in-house modified computational fluid dynamics (CFD) code OpenFOAM. For the subsequent CFD simulations, the cell was treated as a 3-D block with anisotropic thermal conductivities. The model was verified by the remaining two HWS tests not used in the derivation of the kinetic parameters and validated with newly conducted isothermal EV-ARC tests. Further laboratory tests and model validation were also subsequently conducted using Kanthal wire heaters. The validated model was also used to fill the experimental gaps by predicting the onset temperature for TR in simulated EV-ARC environment, heat generation rate due to different abuse reactions, the influence of heating power and heating arrangement as well as the effect of heat dissipation on TR evolution and the implications for battery thermal management. The present study has identified the TR onset temperature of the considered 21700 LIB to be between 131 and 132 °C. The predicted heat generation rate due to the decompositions of SEI and anode were found to follow similar patterns while that from cathode increase sharply near the maximum cell surface temperature, indicating the possibility of delaying TR onset temperature by optimising the cathode material. The time to maximum cell surface temperature decreases rapidly with the increase of the heating power

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study:a comparison of laboratory monocultures and community interactions

    Get PDF
    The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 μatm pCO2, but DMSP production normalised to cell volume was 12 % lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32 % respectively at pCO2 up to 3000 μatm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMS and dissolved DMSP at higher pCO2. DMS and DMSP production differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers
    corecore