30,084 research outputs found
High-Speed Projects in the United States: Identifying the Elements for Success-Part 1, MTI Report 05-01
For almost half a century, high-speed ground transportation (HSGT) has held the promise of fast, convenient, and environmentally sound travel for distances between 40 and 600 miles. While a number of HSGT systems have been developed and deployed in Asia and Europe, none has come close to being implemented in the United States. Yet this is not for lack of trying. There have been several efforts around the country, most of which have failed, some of which are still in the early stages, and a few of which might come to pass.
The goal of this study was to identify lessons learned for successfully developing and implementing high-speed rail (HSR) in the United States. Through a broad literature review, interviews, and three specific case studies—Florida, California, and the Pacific Northwest—this study articulates those lessons and presents themes for future consideration
Integrated structure electromagnetic optimization of large space antenna reflectors
The requirements for extremely precise and powerful large space antenna reflectors have motivated the development of a procedure for shape control of the reflector surface. A mathematical optimization procedure has been developed which improves antenna performance while minimizing necessary shape correction effort. In contrast to previous work which proposed controlling the rms distortion error of the surface thereby indirectly improving antenna performance, the current work includes electromagnetic (EM) performance calculations as an integral of the control procedure. The application of the procedure to a radiometer design with a tetrahedral truss backup structure demonstrates the potential for significant improvement. The results indicate the benefit of including EM performance calculations in procedures for shape control of large space antenna reflectors
Mechanics and force transmission in soft composites of rods in elastic gels
We report detailed theoretical investigations of the micro-mechanics and bulk
elastic properties of composites consisting of randomly distributed stiff
fibers embedded in an elastic matrix in two and three dimensions. Recent
experiments published in Physical Review Letters [102, 188303 (2009)] have
suggested that the inclusion of stiff microtubules in a softer, nearly
incompressible biopolymer matrix can lead to emergent compressibility. This can
be understood in terms of the enhancement of the compressibility of the
composite relative to its shear compliance as a result of the addition of stiff
rod-like inclusions. We show that the Poisson's ratio of such a composite
evolves with increasing rod density towards a particular value, or {\em fixed
point}, independent of the material properties of the matrix, so long as it has
a finite initial compressibility. This fixed point is in three
dimensions and in two dimensions. Our results suggest an important
role for stiff filaments such as microtubules and stress fibers in cell
mechanics. At the same time, our work has a wider elasticity context, with
potential applications to composite elastic media with a wide separation of
scales in stiffness of its constituents such as carbon nanotube-polymer
composites, which have been shown to have highly tunable mechanics.Comment: 10 pages, 8 figure
Interaction of Phonons and Dirac Fermions on the Surface of Bi2Se3: A Strong Kohn Anomaly
We report the first measurements of phonon dispersion curves on the (001)
surface of the strong three-dimensional topological insulator Bi2Se3. The
surface phonon measurements were carried out with the aid of coherent helium
beam surface scattering techniques. The results reveal a prominent signature of
the exotic metallic Dirac fermion quasi-particles, including a strong Kohn
anomaly. The signature is manifest in a low energy isotropic convex dispersive
surface phonon branch with a frequency maximum of 1.8 THz, and having a
V-shaped minimum at approximately 2kF that defines the Kohn anomaly.
Theoretical analysis attributes this dispersive profile to the renormalization
of the surface phonon excitations by the surface Dirac fermions. The
contribution of the Dirac fermions to this renormalization is derived in terms
of a Coulomb-type perturbation model
Persistence in the Voter model: continuum reaction-diffusion approach
We investigate the persistence probability in the Voter model for dimensions
d\geq 2. This is achieved by mapping the Voter model onto a continuum
reaction-diffusion system. Using path integral methods, we compute the
persistence probability r(q,t), where q is the number of ``opinions'' in the
original Voter model. We find r(q,t)\sim exp[-f_2(q)(ln t)^2] in d=2;
r(q,t)\sim exp[-f_d(q)t^{(d-2)/2}] for 2<d<4; r(q,t)\sim exp[-f_4(q)t/ln t] in
d=4; and r(q,t)\sim exp[-f_d(q)t] for d>4. The results of our analysis are
checked by Monte Carlo simulations.Comment: 10 pages, 3 figures, Latex, submitted to J. Phys. A (letters
Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis.
11 p.-4 fig.-1 tab.Background: Increased circulating levels of endoglin+ endothelial microparticles (EMPs) have been identified in several cardiovascular disorders, related to severity. Endoglin is an auxilary receptor for transforming growth factor β (TGF-β) important in the regulation of vascular structure.Results: We quantified the number of microparticles in plasma of six patients with chronic thromboembolic pulmonary hypertension (CTEPH) and age- and sex-matched pulmonary embolic (PE) and healthy controls and investigated the role of microparticle endoglin in the regulation of pulmonary endothelial function in vitro. Results show significantly increased levels of endoglin+ EMPs in CTEPH plasma, compared to healthy and disease controls. Co-culture of human pulmonary endothelial cells with CTEPH microparticles increased intracellular levels of endoglin and enhanced
TGF-β-induced angiogenesis and Smad1,5,8 phosphorylation in cells, without affecting BMPRII expression. In an in vitro model, we generated endothelium-derived MPs with enforced membrane localization of endoglin. Co-culture of these MPs with endothelial cells increased cellular endoglin content, improved cell survival and stimulated
angiogenesis in a manner similar to the effects induced by overexpressed protein.Conclusions: Increased generation of endoglin+ EMPs in CTEPH is likely to represent a protective mechanism supporting endothelial cell survival and angiogenesis, set to counteract the effects of vascular occlusion and endothelial damage.This research was supported by a project grant (PG 11/13/28765) from the British Heart Foundation and by grants from Ministerio de Economia y Competitividad of Spain (SAF2013-43421-R to CB)Peer reviewe
Design and fabrication of an autonomous rendezvous and docking sensor using off-the-shelf hardware
NASA Marshall Space Flight Center (MSFC) has developed and tested an engineering model of an automated rendezvous and docking sensor system composed of a video camera ringed with laser diodes at two wavelengths and a standard remote manipulator system target that has been modified with retro-reflective tape and 830 and 780 mm optical filters. TRW has provided additional engineering analysis, design, and manufacturing support, resulting in a robust, low cost, automated rendezvous and docking sensor design. We have addressed the issue of space qualification using off-the-shelf hardware components. We have also addressed the performance problems of increased signal to noise ratio, increased range, increased frame rate, graceful degradation through component redundancy, and improved range calibration. Next year, we will build a breadboard of this sensor. The phenomenology of the background scene of a target vehicle as viewed against earth and space backgrounds under various lighting conditions will be simulated using the TRW Dynamic Scene Generator Facility (DSGF). Solar illumination angles of the target vehicle and candidate docking target ranging from eclipse to full sun will be explored. The sensor will be transportable for testing at the MSFC Flight Robotics Laboratory (EB24) using the Dynamic Overhead Telerobotic Simulator (DOTS)
Autoguidance video sensor for docking
The Automated Rendezvous and Docking system (ARAD) is composed of two parts. The first part is the sensor which consists of a video camera ringed with two wavelengths of laser diode. The second part is a standard Remote Manipulator System (RMS) target used on the Orbiter that has been modified with three circular pieces of retro-reflective tape covered by optical filters which correspond to one of the wavelengths of laser diode. The sensor is on the chase vehicle and the target is on the target vehicle. The ARAD system works by pulsing one wavelength laser diodes and taking a picture. Then the second wavelength laser diodes are pulsed and a second picture is taken. One picture is subtracted from the other and the resultant picture is thresholded. All adjacent pixels above threshold are blobbed together (X and Y centroids calculated). All blob centroids are checked to recognize the target out of noise. Then the three target spots are windowed and tracked. The three target spot centroids are used to evaluate the roll, yaw, pitch, range, azimuth, and elevation. From that a guidance routine can guide the chase vehicle to dock with the target vehicle with the correct orientation
THE FUTURE OF FEDERAL PROGRAMS FOR SOUTHERN COMMODITIES
Political Economy,
- …