research

Autoguidance video sensor for docking

Abstract

The Automated Rendezvous and Docking system (ARAD) is composed of two parts. The first part is the sensor which consists of a video camera ringed with two wavelengths of laser diode. The second part is a standard Remote Manipulator System (RMS) target used on the Orbiter that has been modified with three circular pieces of retro-reflective tape covered by optical filters which correspond to one of the wavelengths of laser diode. The sensor is on the chase vehicle and the target is on the target vehicle. The ARAD system works by pulsing one wavelength laser diodes and taking a picture. Then the second wavelength laser diodes are pulsed and a second picture is taken. One picture is subtracted from the other and the resultant picture is thresholded. All adjacent pixels above threshold are blobbed together (X and Y centroids calculated). All blob centroids are checked to recognize the target out of noise. Then the three target spots are windowed and tracked. The three target spot centroids are used to evaluate the roll, yaw, pitch, range, azimuth, and elevation. From that a guidance routine can guide the chase vehicle to dock with the target vehicle with the correct orientation

    Similar works