194 research outputs found

    Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles

    Full text link
    We present a general study of frequency and magnetic field dependence of the specific heat power produced during field-driven hysteresis cycles in magnetic nanoparticles with relevance to hyperthermia applications in biomedicine. Employing a kinetic Monte-Carlo method with natural time scales allows us to go beyond the assumptions of small driving field amplitudes and negligible inter-particle interactions, which are fundamental to applicability of the standard approach based on linear response theory. The method captures the superparamagnetic and fully hysteretic regimes and the transition between them. Our results reveal unexpected dipolar interaction-induced enhancement or suppression of the specific heat power, dependent on the intrinsic statistical properties of particles, which cannot be accounted for by the standard theory. Although the actual heating power is difficult to predict because of the effects of interactions, optimum heating is in the transition region between the superparamagnetic and fully hysteretic regimes

    Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments

    Full text link
    Thermally activated magnetization decay is studied in ensembles of clusters of interacting dipolar moments by applying the master-equation formalism, as a model of thermal relaxation in systems of interacting single-domain ferromagnetic particles. Solving the associated master-equation reveals a breakdown of the energy barrier picture depending on the geometrical symmetry of structures. Deviations are most pronounced for reduced symmetry and result in a strong interaction dependence of relaxation rates on the memory of system initialization. A simple two-state system description of an ensemble of clusters is developed which accounts for the observed anomalies. These results follow from a semi-analytical treatment, and are fully supported by kinetic Monte-Carlo simulations.Comment: 9 pages, 6 figure

    Non-converging hysteretic cycles in random spin networks

    Full text link
    Behavior of hysteretic trajectories for cyclical input is investigated as a function of the internal structure of a system modeled by the classical random network of binary spins. Different regimes of hysteretic behavior are discovered for different network connectivity and topology. Surprisingly, hysteretic trajectories which do not converge at all are observed. They are shown to be associated with the presence of specific topological elements in the network structure, particularly with the fully interconnected spin groups of size equal or greater than 4.Comment: 4 pages, 3 figure

    Bloch points in nanostrips

    Get PDF
    Complex magnetic materials hosting topologically non-trivial particle-like objects such as skyrmions are under intensive research and could fundamentally change the way we store and process data. One important class of materials are helimagnetic materials with Dzyaloshinskii-Moriya interaction. Recently, it was demonstrated that nanodisks consisting of two layers with opposite chirality can host a single stable Bloch point of two different types at the interface between the layers. Using micromagnetic simulations we show that FeGe nanostrips consisting of two layers with opposite chirality can host multiple coexisting Bloch points in an arbitrary combination of the two different types. We show that the number of Bloch points that can simultaneously coexist depends on the strip geometry and the type of the individual Bloch points. Our simulation results allow us to predict strip geometries suitable for an arbitrary number of Bloch points. We show an example of an 80-Bloch-point configuration verifying the prediction

    An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments

    Get PDF
    In vitro and in vivo evaluation of magnetic nanoparticles in relation to magnetic fluid hyperthermia (MFH) treatment is an on-going quest. This current paper demonstrates the design, fabrication, and evaluation of an in vivo coil setup for real-time, whole body thermal imaging. Numerical calculations estimating the flux densities, and in silico analysis suggest that the proposed in vivo coil setup could be used for real-time thermal imaging during MFH experiments (within the limitations due to issues of penetration depth). Suchin silicoevaluations provide insightsinto the designofsuitable AMF applicators for AC magnetic field-mediated in vivoMNP heating as demonstrated in this study

    Consistent energy barrier distributions in magnetic particle chains

    No full text
    We investigate long-time thermal activation behaviour in magnetic particle chains of variable length. Chains are modelled as Stoner–Wohlfarth particles coupled by dipolar interactions. Thermal activation is described as a hopping process over a multidimensional energy landscape using the discrete orientation model limit of the Landau–Lifshitz–Gilbert dynamics. The underlying master equation is solved by diagonalising the associated transition matrix, which allows the evaluation of distributions of time scales of intrinsic thermal activation modes and their energy representation. It is shown that as a result of the interaction dependence of these distributions, increasing the particle chain length can lead to acceleration or deceleration of the overall relaxation process depending on the initialisation procedure

    Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain

    Full text link
    Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy efficient refrigeration, but only a few materials which suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La0.7Ca0.3MnO3 using strain mediated feedback from BaTiO3 substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.Comment: 32 pages, 1 Table, 5 figures, supplementary informatio

    Effects of interactions on the relaxation processes in magnetic nanostructures

    Get PDF
    Controlling the relaxation of magnetization in magnetic nanostructures is key to optimizing magnetic storage device performance. This relaxation is governed by both intrinsic and extrinsic relaxation mechanisms and with the latter strongly dependent on the interactions between the nanostructures. In the present work we investigate laser induced magnetization dynamics in a broadband optical resonance type experiment revealing the role of interactions between nanostructures on the relaxation processes of granular magnetic structures. The results are corroborated by constructing a temperature dependent numerical micromagnetic model of magnetization dynamics based on the Landau-Lifshitz-Bloch equation. The model predicts a strong dependence of damping on the key material properties of coupled granular nanostructures in good agreement with the experimental data. We show that the intergranular, magnetostatic and exchange interactions provide a large extrinsic contribution to the damping. Finally we show that the mechanism can be attributed to an increase in spin-wave degeneracy with the ferromagnetic resonance mode as revealed by semianalytical spin-wave calculations

    History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2

    Get PDF
    The discovery of two-dimensional magnets has initiated a new field of research, exploring both fundamental low-dimensional magnetism, and prospective spintronic applications. Recently, observations of magnetic skyrmions in the 2D ferromagnet Fe3GeTe2 (FGT) have been reported, introducing further application possibilities. However, controlling the exhibited magnetic state requires systematic knowledge of the history-dependence of the spin textures, which remains largely unexplored in 2D magnets. In this work, we utilise real-space imaging, and complementary simulations, to determine and explain the thickness-dependent magnetic phase diagrams of an exfoliated FGT flake, revealing a complex, history-dependent emergence of the uniformly magnetised, stripe domain and skyrmion states. The results show that the interplay of the dominant dipolar interaction and strongly temperature dependent out-of-plane anisotropy energy terms enables the selective stabilisation of all three states at zero field, and at a single temperature, while the Dzyaloshinksii-Moriya interaction must be present to realise the observed NĂ©el-type domain walls. The findings open perspectives for 2D devices incorporating topological spin textures

    Thermodynamics of interacting magnetic nanoparticles

    Get PDF
    We apply the concepts of stochastic thermodynamics combined with transition-state theory to develop a framework for evaluating local heat distributions across the assemblies of interacting magnetic nanoparticles (MPs) subject to time-varying external magnetic fields. We show that additivity of entropy production in the particle state-space allows separating the entropy contributions and evaluating the heat produced by the individual MPs despite interactions. Using MP chains as a model system for convenience, without losing generality, we show that the presence of dipolar interactions leads to significant heat distributions across the chains. Our study also suggests that the typically used hysteresis loops cannot be used as a measure of energy dissipation at the local particle level within MP clusters, aggregates, or assemblies, and explicit evaluation of entropy production based on appropriate theory, such as developed here, becomes necessary
    • …
    corecore