363 research outputs found

    The mean ionic charge of silicon in 3HE-rich solar flares

    Get PDF
    Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares

    Observation of pick-up ions in the solar wind: Evidence for the source of the anomalous cosmic ray component?

    Get PDF
    Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component

    The Ionic Charge of Solar Energetic Particles with Energies of 0.3-70 MeV per Nucleon

    Get PDF
    With the three particle sensors Low Energy Ion Composition Analyzer (LICA), Heavy Ion Large Area Proportional Counter Telescope (HILT), and Mass Spectrometer Telescope (MAST) on board the polar orbiting Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, the ionic charge of solar energetic particles (SEP) was measured over a wide energy range from 0.3 to 70 MeV per nucleon. For each sensor, the evaluation was performed separately. The results obtained with LICA (0.3-10 MeV per nucleon) and MAST (15-70 MeV per nucleon) were published earlier by Mason et al. and Leske et al., respectively. In this work we present the results of the HILT sensor (7-50 MeV per nucleon) and discuss the combined results of the three instruments. With HILT, the mean ionic charge of SEP was measured for carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, argon, calcium, and iron in the energy range 7È50 MeV per nucleon during two consecutive large SEP events in 1992 OctoberÈNovember. The mean ionic charge was inferred from the rigidity-dependent geomagnetic flux cutoff. The coronal temperatures deduced from the mean ionic charges are well in accordance with the value of ~2x10^6 K except for neon and magnesium, as previously reported. The data measured with the three sensors, LICA, HILT, and MAST, agree well and are in accordance with data previously measured at energies below 3 MeV per nucleon (Luhn et al.), except for iron, where we observed a significant energy dependence of the mean charge over the energy range 0.3-70 MeV per nucleon

    The Advanced Composition Explorer

    Get PDF
    The Advanced Composition Explorer (ACE) was recently selected as one of two new Explorer‐class missions to be developed for launch during the mid‐1990’s ACE will observe particles of solar, interplanetary, interstellar, and galactic origins, spanning the energy range from that of the solar wind (∼1 keV/nucleon) to galactic cosmic ray energies (several hundred MeV/nucleon). Definitive studies will be made of the abundance of nearly all isotopes from H to Zn (1≤Z≤30), with exploratory isotope studies extending to Zr(Z=40). To accomplish this, the ACE payload includes six high‐resolution spectrometers, each designed to provide the optimum charge, mass, or charge‐state resolution in its particular energy range, and each having a geometry factor optimized for the expected flux levels, so as to provide a collecting power a factor of 10 to 1000 times greater than previous or planned experiments. The payload also includes several instruments of standard design that will monitor solar wind and magnetic field conditions and energetic H, He, and electron fluxes. We summarize here the scientific objectives, instrumentation, spacecraft, and mission approach that were defined for ACE during the Phase‐A study period

    Solar cycle dynamics of solar, magnetospheric, and heliospheric particles, and long-term atmospheric coupling: SAMPLEX

    Get PDF
    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1995 through July 1, 1996. Bibliographic entries for 1995 and 1996 to date (July 1996) are included. The SAMPEX science team was extremely active, with 20 articles published or submitted to refereed journals, 18 papers published in their entirety in Conference Proceedings, and 53 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings of anomalous cosmic rays, solar energetic particles, magnetospheric precipitating electrons, trapped H and He isotopes, and data analysis activities

    Solar Cycle Dynamics of Solar, Magnetospheric, and Heliospheric Particles, and Long-Term Atmospheric Coupling: SAMPEX

    Get PDF
    This report summarizes science analysis activities by the SAMPEX mission science team during the period during the period July 1, 1997 through July 1, 1997. Bibliographic entries for 1996 and 1997 to date (July 1997) are included. The SAMPEX science team was extremely active, with 27 articles published or submitted to refereed journals, 17 papers published in their entirety in Conference Proceedings, and 74 contributed papers, seminars, and miscellaneous presentations. The bibliography at the end of this report constitutes the primary description of the research activity. Science highlights are given under the major activity headings, as well as other activities of the team
    corecore