20 research outputs found

    Assembling quantum dots via critical Casimir forces

    Get PDF
    AbstractProgrammed assembly of colloidal inorganic nanocrystal superstructures is crucial for the realization of future artificial solids as well as present optoelectronic applications. Here, we present a new way to assemble quantum dots reversibly using binary solvents. By tuning the temperature and composition of the binary solvent mixture, we achieve reversible aggregation of nanocrystals in solution induced by critical Casimir forces. We study the temperature-sensitive quantum-dot assembly with dynamic light scattering. We show that careful screening of the electrostatic repulsion by adding salt provides a further parameter to tune the reversible assembly

    Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures

    Get PDF
    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.</p

    Multicompartment dendrimicelles with binary, ternary and quaternary core composition

    Get PDF
    Hierarchically built-up multicompartment nanoaggregate systems are of interest for, e.g., novel materials and medicine. Here we present a versatile strategy to generate and unambiguously characterize complex coacervate-core micelles by exploiting four different dendrimeric subcomponents as core-units. The resulting mesoscale structures have a hydrodynamic diameter of 50 nm and a core size of 33 nm, and host about thirty 6th generation polyamidoamine (PAMAM) dendrimers. We have used FRET (efficiency of similar to 0.2) between fluorescein and rhodamine moieties immobilized on separate PAMAM dendrimers (G6-F and G6-R, respectively) to prove synchronous encapsulation in the micelle core. Tuning the proximity of the FRET pair molecules either by varying the G6-F : G6-R ratio, or by co-assembling non-functionalized dendrimer (G6-E) in the core, reveals the optimal FRET efficiency to occur at a minimum of 70% loading with G6-F and G6-R. Additional co-encapsulation of 6th generation gold dendrimer-encapsulated nanoparticles (G6-Au) in the micelle core shows a dramatic reduction of the FRET efficiency, which can be restored by chemical etching of the gold nanoparticles from within the micellar core with thiols, leaving the micelle itself intact. This study reveals the controlled co-assembly of up to four different types of subcomponents in one single micellar core and concomitantly shows the wide variety of structures that can be made with a well-defined basic set of subcomponents. It is straightforward to design related strategies, to incorporate inside one micellar core, e.g., even more than 4 different dendrimers, or other classes of (macro)molecules, with different functional groups, other FRET pairs or different encapsulated metal nanoparticles.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Dutch guidelines for physiotherapy in patients with stress urinary incontinence: An update

    Get PDF
    Introduction and hypothesis: Stress urinary incontinence (SUI) is the most common form of incontinence impacting on quality of life (QOL) and is associated with high financial, social, and emotional costs. The purpose of this study was to provide an update existing Dutch evidence-based clinical practice guidelines (CPGs) for physiotherapy management of patients with stress urinary incontinence (SUI) in order to support physiotherapists in decision making and improving efficacy and uniformity of care. Materials and methods: A computerized literature search of relevant databases was performed to search for information regarding etiology, prognosis, and physiotherapy assessment and management in patients with SUI. Where no evidence was available, recommendations were based on consensus. Clinical application of CPGs and feasibility were reviewed. The diagnostic process consists of systematic history taking and physical examination supported by reliable and valid assessment tools to determine physiological potential for recovery. Therapy is related to different problemcategories. SUI treatment is generally based on pelvic floor muscle exercises combined with patient education and counseling. An important strategy is to reduce prevalent SUI by reducing influencing risk factors. Results: Scientific evidence supporting assessment and management of SUI is strong. Conclusions: The CPGs reflect the current state of knowledge of effective and tailor-made intervention in SUI patients

    Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    Get PDF
    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane- receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.</p

    Transanal minimally invasive surgery (TAMIS) versus endoscopic submucosal dissection (ESD) for resection of non-pedunculated rectal lesions (TRIASSIC study): Study protocol of a European multicenter randomised controlled trial

    Get PDF
    Background: In the recent years two innovative approaches have become available for minimally invasive en bloc resections of large non-pedunculated rectal lesions (polyps and early cancers). One is Transanal Minimally Invasive Surgery (TAMIS), the other is Endoscopic Submucosal Dissection (ESD). Both techniques are standard of care, but a direct randomised comparison is lacking. The choice between either of these procedures is dependent on local expertise or availability rather than evidence-based. The European Society for Endoscopy has recommended that a comparison between ESD and local surgical resection is needed to guide decision making for the optimal approach for the removal of large rectal lesions in Western countries. The aim of this study is to directly compare both procedures in a randomised setting with regard to effectiveness, safety and perceived patient burden. Methods: Multicenter randomised trial in 15 hospitals in the Netherlands. Patients with non-pedunculated lesions > 2 cm, where the bulk of the lesion is below 15 cm from the anal verge, will be randomised between either a TAMIS or an ESD procedure. Lesions judged to be deeply invasive by an expert panel will be excluded. The primary endpoint is the cumulative local recurrence rate at follow-up rectoscopy at 12 months. Secondary endpoints are: 1) Radical (R0-) resection rate; 2) Perceived burden and quality of life; 3) Cost effectiveness at 12 months; 4) Surgical referral rate at 12 months; 5) Complication rate; 6) Local recurrence rate at 6 months. For this non-inferiority trial, the total sample size of 198 is based on an expected local recurrence rate of 3% in the ESD group, 6% in the TAMIS group and considering a difference of less than 6% to be non-inferior. Discussion: This is the first European randomised controlled trial comparing the effectiveness and safety of TAMIS and ESD for the en bloc resection of large non-pedunculated rectal lesions. This is important as the detection rate of these adenomas is expected to further increase with the introduction of colorectal screening programs throughout Europe. This study will therefore support an optimal use of healthcare resources in the future. Trial registration: Netherlands Trial Register, NL7083, 06 July 2018

    Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures

    No full text
    Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Conjugated polymer shells on colloidal templates by seeded Suzuki-Miyaura dispersion polymerization

    No full text
    The self-assembly of colloidal conjugated polymers presents a versatile and powerful oute towards new functional optoelectronic materials and devices. However, this strategy relies on the existence of chemical protocols to prepare highly monodisperse colloids of conjugated polymers in high yields. Here, a recently developed Suzuki–Miyaura dispersion polymerization method is adopted to synthesize core–shell particles, in which a conjugated polymer shell is grown onto non-conjugated organic and inorganic colloidal templates. By chemically anchoring aryl halide groups at the particle surface, a conjugated polymer shell can be attached to a wide variety of organic and inorganic microparticles. In this way, both spherical and non-spherical hybrid conjugated polymer particles are prepared, and it is shown that the method can be applied to a variety of conjugated polymers. This new method offers independent control of the size, shape and photophysical properties of these novel conjugated polymer particles
    corecore