12 research outputs found

    Ligament Mediated Fragmentation of Viscoelastic Liquids

    Get PDF
    The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with n_{min}=4. The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.DuPont MIT Allianc

    Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    Get PDF
    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes

    Rotary atomization of Newtonian and viscoelastic liquids

    No full text
    We study the dynamics of fragmentation for Newtonian and viscoelastic liquids in rotary atomization. In this common industrial process centripetal acceleration destabilizes the liquid torus that forms at the rim of a spinning cup or disk due to the Rayleigh-Taylor instability. The resulting ligaments leave the liquid torus with a remarkably repeatable spacing that scales inversely with the rotation rate. The fluid filaments then follow a well-defined geometrical path-line that is described by the involute of a circle. Knowing the geometry of this phenomenon we derive the detailed kinematics of this process and compare it with the experimental observations. We show that the ligaments elongate tangentially along the involute of the circle and thin radially as they separate from the cup. We use these kinematic conditions to develop an expression for the spatial variation of the filament deformation rate and show that it decays away from the spinning cup. Once the ligaments are sufficiently far from the cup, they are not stretched sufficiently fast to overcome the critical rate of capillary thinning and consequently undergo capillary-driven breakup forming droplets. We couple these kinematic considerations with the known properties of several Newtonian and viscoelastic test liquids to develop a quantitative understanding of this commercially important fragmentation process that can be compared in detail with experimental observations. We also investigate the resulting droplet size distributions and observe that the appearance of satellite droplets during the pinch-off process lead to the emergence of bidisperse droplet size distributions. These binary distributions are well described by the superposition of two separate Γ distributions that capture the physics of the disintegration process for the main and satellite droplets, respectively. Furthermore, as we consider more viscous Newtonian liquids or weakly viscoelastic test fluids, we show that changes in the liquid viscosity or viscoelasticity have a negligible effect on the average droplet size. However, incorporation of viscous/viscoelastic effects delays the thinning dynamics in the ligaments and thus results in broader droplet size distributions. The ratio of the primary to satellite droplet size increases monotonically with both viscosity and viscoelasticity. We develop a simple physical model that rationalizes the observed experimental trends and provides us a better understanding of the principal dynamical features of rotary fragmentation for both Newtonian and weakly viscoelastic liquids

    Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)

    No full text
    The extensional rheological properties of dilute polymer solutions play a dominant role in many commercial processes such as air-assisted atomization. This is a high deformation rate process important in application of diverse materials such as paints, fertilizer sprays and delivery of airborne drugs. Dilute polymeric solutions which have identical values of high shear-rate viscosity (HSV) often exhibit different values of Sauter Mean Diameter (SMD) in their spray size distributions as a result of differing extensional rheological properties. We explore the atomization of a series of model Poly(ethylene oxide) (PEO) solutions dissolved in water/glycerol mixtures. Each solution is sprayed with an air-assisted spray gun under similar conditions and imaged with a commercial spray measurement system. The values of HSV for PEO solutions are close to the solvent viscosity and matched to those of typical ink or paint samples. The surface tensions of the fluids are also tuned to be very similar, however both the SMD and the droplet size distribution change considerably. For the highest molecular weight PEO systems, interconnected beads-on-string structures are observed at different positions of the spray fan. Capillary Break-up Extensional Rheometry (CaBER) can be used to measure the extensional properties of the more viscous solutions, but the well-known limitations of this approach include inertially-induced asymmetries, gravitational sagging and the very short filament lifetimes of low viscosity samples all of which constrain the range of relaxation times that can be probed. Consequently we also explore the use of Rayleigh Ohnesorge Jet Elongational Rheometry (ROJER) to probe the extensional response of these viscoelastic solutions at realistic timescales and deformation rates. A cylindrical liquid jet is excited by a piezo-actuator at a known frequency as it exits a micromachined nozzle, and stroboscopic imaging provides high temporal and spatial resolution in the break-up process. Analyzing the evolution in the jet diameter before break-up enables meaningful measurement of relaxation times down to values as small as 60 μs, and these values can be directly correlated with the differences in the final spray size distributions and the mean diameters. We outline a simple model for the fluid dynamics of the thinning filaments close to breakup that accurately describes the variation of the average droplet diameter as a function of the elongational relaxation time measured for each fluid

    No evidence for ape plasmodium infections in humans in Gabon

    No full text
    African great apes are naturally infected by a multitude of Plasmodium species most of them recently discovered, among which several are closely related to human malaria agents. However, it is still unknown whether these animals can serve as source of infections for humans living in their vicinity. To evaluate this possibility, we analysed the nature of Plasmodium infections from a bank of 4281 human blood samples collected in 210 villages of Gabon, Central Africa. Among them, 2255 were detected positive to Plasmodium using molecular methods (Plasmodium Cytochrome b amplification). A high throughput sequencing technology (454 GS-FLX Titanium technology, Roche) was then used to identify the Plasmodium species present within each positive sample. Overall, we identified with confidence only three species infecting humans in Gabon: P. falciparum, P. malariae and P. ovale. None of the species known to infect non-human primates in Central Africa was found. Our study shows that ape Plasmodium parasites of the subgenus Laverania do not constitute a frequent source of infection for humans. It also suggests that some strong host genetic barriers must exist to prevent the cross species transmission of ape Plasmodium in a context of ever increasing contacts between humans and wildlife

    Imported Amoebic Liver Abscess in France

    Get PDF
    Worldwide, amoebic liver abscess (ALA) can be found in individuals in non-endemic areas, especially inforeign-born travelers. We performed a retrospective analysis of ALA in patients admitted to French hospitals between 2002 and 2006.We compared imported ALA cases in European and foreign-born patients and assessed the factors associated with abscesssize using a logistic regression model

    Novel Series of Potent Glucokinase Activators Leading to the Discovery of AM-2394

    No full text
    Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure–activity relationships leading to the discovery of <b>AM-2394</b>, a structurally distinct GKA. <b>AM-2394</b> activates GK with an EC<sub>50</sub> of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an <i>ob/ob</i> mouse model of diabetes
    corecore