37 research outputs found

    COmplexome Profiling ALignment (COPAL) reveals remodeling of mitochondrial protein complexes in Barth syndrome

    Get PDF
    Item does not contain fulltextMOTIVATION: Complexome profiling combines native gel electrophoresis with mass spectrometry to obtain the inventory, composition and abundance of multiprotein assemblies in an organelle. Applying complexome profiling to determine the effect of a mutation on protein complexes requires separating technical and biological variations from the variations caused by that mutation. RESULTS: We have developed the COmplexome Profiling ALignment (COPAL) tool that aligns multiple complexome profiles with each other. It includes the abundance profiles of all proteins on two gels, using a multi-dimensional implementation of the dynamic time warping algorithm to align the gels. Subsequent progressive alignment allows us to align multiple profiles with each other. We tested COPAL on complexome profiles from control mitochondria and from Barth syndrome (BTHS) mitochondria, which have a mutation in tafazzin gene that is involved in remodeling the inner mitochondrial membrane phospholipid cardiolipin. By comparing the variation between BTHS mitochondria and controls with the variation among either, we assessed the effects of BTHS on the abundance profiles of individual proteins. Combining those profiles with gene set enrichment analysis allows detecting significantly affected protein complexes. Most of the significantly affected protein complexes are located in the inner mitochondrial membrane (mitochondrial contact site and cristae organizing system, prohibitins), or are attached to it (the large ribosomal subunit). AVAILABILITY AND IMPLEMENTATION: COPAL is written in python and is available from http://github.com/cmbi/copal. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    The role of AMPK signaling in brown adipose tissue activation

    Get PDF
    Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.Diabetes mellitus: pathophysiological changes and therap

    Absence of Self-Averaging and Universal Fluctuations in Random Systems Near Critical Points

    Get PDF
    The distributions P(X) of singular thermodynamic quantities, on an ensemble of d-dimensional quenched random samples of linear size L near a critical point, are analyzed using the renormalization group. For L much larger than the correlation length ξ, we recover strong self-averaging (SA): P(X) approaches a Gaussian with relative squared width RX~(L/ξ)−d. For L≪ξ we show weak SA (RX decays with a small power of L) or no SA [P(X) approaches a non-Gaussian, with universal L-independent relative cumulants], when the randomness is irrelevant or relevant, respectively

    Mitochondrial Dysfunction Underlies Cardiomyocyte Remodeling in Experimental and Clinical Atrial Fibrillation

    Get PDF
    Atrial fibrillation (AF), the most common progressive tachyarrhythmia, results in structural remodeling which impairs electrical activation of the atria, rendering them increasingly permissive to the arrhythmia. Previously, we reported on endoplasmic reticulum stress and NAD+ depletion in AF, suggesting a role for mitochondrial dysfunction in AF progression. Here, we examined mitochondrial function in experimental model systems for AF (tachypaced HL-1 atrial cardiomyocytes and Drosophila melanogaster) and validated findings in clinical AF. Tachypacing of HL-1 cardiomyocytes progressively induces mitochondrial dysfunction, evidenced by impairment of mitochondrial Ca2+-handling, upregulation of mitochondrial stress chaperones and a decrease in the mitochondrial membrane potential, respiration and ATP production. Atrial biopsies from AF patients display mitochondrial dysfunction, evidenced by aberrant ATP levels, upregulation of a mitochondrial stress chaperone and fragmentation of the mitochondrial network. The pathophysiological role of mitochondrial dysfunction is substantiated by the attenuation of AF remodeling by preventing an increased mitochondrial Ca2+-influx through partial blocking or downregulation of the mitochondrial calcium uniporter, and by SS31, a compound that improves bioenergetics in mitochondria. Together, these results show that conservation of the mitochondrial function protects against tachypacing-induced cardiomyocyte remodeling and identify this organelle as a potential novel therapeutic target

    Ethnic differences in metabolite signatures and type 2 diabetes: a nested case-control analysis among people of South Asian, African and European origin

    Get PDF
    Accumulation of metabolites may mark or contribute to the development of type 2 diabetes mellitus (T2D), but there is a lack of data from ethnic groups at high risk. We examined sphingolipids, acylcarnitines and amino acids, and their association with T2D in a nested case-control study among 54 South Asian Surinamese, 54 African Surinamese and 44 Dutch in the Netherlands. Plasma metabolites were determined at baseline (2001-2003), and cumulative prevalence and incidence of T2D at follow-up (2011-2012). Weighted linear and logistic regression analyses were used to study associations. The mean level of most sphingolipids was lower, and amino-acid levels higher, in the Surinamese groups than among the Dutch. Surinamese individuals had higher mono- and polyunsaturated acylcarnitines and lower plasma levels of saturated acylcarnitine species than the Dutch. Several sphingolipids and amino acids were associated with T2D. Although only the shorter acylcarnitines seemed associated with prevalent T2D, we found an association of all acylcarnitines (except C0, C18 and C18:2) with incident T2D. Further analyses suggested a potentially different association of several metabolites across ethnic groups. Extension and confirmation of these findings may improve the understanding of ethnic differences and contribute to early detection of increased individual risk.Medical Biochemistr

    Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    Get PDF
    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized double-blind cross-over study for 30 days. Resveratrol significantly reduced sleeping- and resting metabolic rate. In muscle, resveratrol activated AMPK, increased SIRT1 and PGC-1α protein levels, increased citrate synthase activity without change in mitochondrial content, and improved muscle mitochondrial respiration on a fatty acid-derived substrate. Furthermore, resveratrol elevated intramyocellular lipid levels, and decreased intrahepatic lipid content, circulating glucose, triglycerides, alanine-aminotransferase, and inflammation markers. Systolic blood pressure dropped and HOMA index improved after resveratrol. In the postprandial state, adipose tissue lipolysis and plasma fatty acid and glycerol decreased. In conclusion, we demonstrate that 30 days of resveratrol supplementation induces metabolic changes in obese humans, mimicking the effects of calorie restriction

    Aging selectively dampens oscillation of lipid abundance in white and brown adipose tissue

    Get PDF
    Lipid metabolism is under the control of the circadian system and circadian dysregulation has been linked to obesity and dyslipidemia. These factors and outcomes have also been associated to, or affected by, the process of aging. Here, we investigated whether murine white (WAT) and brown (BAT) adipose tissue lipids exhibit rhythmicity and if this is affected by aging. To this end, we have measured the 24 h lipid profiles of WAT and BAT using a global lipidomics analysis of >1100 lipids. We observed rhythmicity in nearly all lipid classes including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. Overall, similar to 22% of the analyzed lipids were considered rhythmic in WAT and BAT. Despite a general accumulation of lipids upon aging the fraction of oscillating lipids decreased in both tissues to 14% and 18%, respectively. Diurnal profiles of lipids in BAT appeared to depend on the lipid acyl chain length and this specific regulation was lost in aged mice. Our study revealed how aging affects the rhythmicity of lipid metabolism and could contribute to the quest for targets that improve diurnal lipid homeostasis to maintain cardiometabolic health during aging.Diabetes mellitus: pathophysiological changes and therap

    A review of treatment modalities in gyrate atrophy of the choroid and retina (GACR)

    Get PDF
    Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. Methods: Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. Results: A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, L-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. Conclusions: Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Ophthalmic researc

    Quantification of myocardial creatine and triglyceride content in the human heart: precision and accuracy of in vivo proton magnetic resonance spectroscopy

    Get PDF
    Background Proton magnetic resonance spectroscopy (H-1-MRS) of the human heart is deemed to be a quantitative method to investigate myocardial metabolite content, but thorough validations of in vivo measurements against invasive techniques are lacking.Purpose To determine measurement precision and accuracy for quantifications of myocardial total creatine and triglyceride content with localized H-1-MRS.Study type Test-retest repeatability and measurement validation study.Subjects Sixteen volunteers and 22 patients scheduled for open-heart aortic valve replacement or septal myectomy.Field Strength/Sequence Prospectively ECG-triggered respiratory-gated free-breathing single-voxel point-resolved spectroscopy (PRESS) sequence at 3 T.Assessment Myocardial total creatine and triglyceride content were quantified relative to the total water content by fitting the H-1-MR spectra. Precision was assessed with measurement repeatability. Accuracy was assessed by validating in vivo H-1-MRS measurements against biochemical assays in myocardial tissue from the same subjects.Statistical Tests Intrasession and intersession repeatability was assessed using Bland-Altman analyses. Agreement between H-1-MRS measurements and biochemical assay was tested with regression analyses.Results The intersession repeatability coefficient for myocardial total creatine content was 41.8% with a mean value of 0.083% +/- 0.020% of the total water signal, and 36.7% for myocardial triglyceride content with a mean value of 0.35% +/- 0.13% of the total water signal. Ex vivo myocardial total creatine concentrations in tissue samples correlated with the in vivo myocardial total creatine content measured with H-1-MRS: n = 22, r = 0.44; P < 0.05. Likewise, ex vivo myocardial triglyceride concentrations correlated with the in vivo myocardial triglyceride content: n = 20, r = 0.50; P < 0.05.Data Conclusion We validated the use of localized H-1-MRS of the human heart at 3 T for quantitative assessments of in vivo myocardial tissue metabolite content by estimating the measurement precision and accuracy.Level of Evidence 2Technical Efficacy Stage 2Cardiovascular Aspects of Radiolog

    ARDD 2020: from aging mechanisms to interventions

    Get PDF
    Aging is emerging as a druggable target with growing interest from academia, industry and investors. New technologies such as artificial intelligence and advanced screening techniques, as well as a strong influence from the industry sector may lead to novel discoveries to treat age-related diseases. The present review summarizes presentations from the 7th Annual Aging Research and Drug Discovery (ARDD) meeting, held online on the 1st to 4th of September 2020. The meeting covered topics related to new methodologies to study aging, knowledge about basic mechanisms of longevity, latest interventional strategies to target the aging process as well as discussions about the impact of aging research on society and economy. More than 2000 participants and 65 speakers joined the meeting and we already look forward to an even larger meeting next year. Please mark your calendars for the 8th ARDD meeting that is scheduled for the 31st of August to 3rd of September, 2021, at Columbia University, USA
    corecore