82 research outputs found

    Unravelling the Basic Calcium Phosphate crystal-dependent chondrocyte protein secretome; a role for TGF-β signaling.

    Get PDF
    ObjectiveBasic Calcium Phosphate crystals play an active role in the progression of osteoarthritis. However, the cellular consequences remain largely unknown. Therefore, we characterized for the first time the changes in the protein secretome of human OA articular chondrocytes as a result of BCP stimulation using two unbiased proteomic analysis methods.MethodIsolated human OA articular chondrocytes were stimulated with BCP crystals and examined by RT-qPCR and ELISA after twenty-four and forty-eight hours. Forty-eight hours conditioned media were analysed by label-free LC-MS/MS and an antibody array. The activity of BCP dependent TGF-β signalling was analysed by RT-qPCR and luciferase reporter assays. The molecular consequences regarding BCP-dependent TGF-β signalling on BCP-dependent IL-6 were investigated using specific pathway inhibitors.ResultsSynthesized BCP crystals induced IL-6 expression and secretion upon stimulation of human articular chondrocytes. Concomitant induction of catabolic gene expression was observed. Analysis of conditioned media revealed a complex and diverse response with a large number of proteins involved in TGF-β signalling, both in activation of latent TGF-β and TGF-β superfamily members, which were increased compared to non-stimulated OA chondrocytes. Activity of this BCP driven TGF-β signalling was confirmed by increased activity of expression of TGF-β target genes and luciferase reporters. Inhibition of BCP driven TGF-β signalling resulted in decreased IL-6 expression and secretion with a moderate effect on catabolic gene expression.ConclusionBCP crystal stimulation resulted in a complex and diverse chondrocyte protein secretome response. An important role for BCP-dependent TGF-β signaling was identified in development of a pro-inflammatory environment

    The role of extracellular vesicle miRNAs and tRNAs in synovial fibroblast senescence

    Get PDF
    Extracellular vesicles are mediators of intercellular communication with critical roles in cellular senescence and ageing. In arthritis, senescence is linked to the activation of a pro-inflammatory phenotype contributing to chronic arthritis pathogenesis. We hypothesised that senescent osteoarthritic synovial fibroblasts induce senescence and a pro-inflammatory phenotype in non-senescent osteoarthritic fibroblasts, mediated through extracellular vesicle cargo. Small RNA-sequencing and mass spectrometry proteomics were performed on extracellular vesicles isolated from the secretome of non-senescent and irradiation-induced senescent synovial fibroblasts. β-galactosidase staining confirmed senescence in SFs. RNA sequencing identified 17 differentially expressed miRNAs, 11 lncRNAs, 14 tRNAs and one snoRNA and, 21 differentially abundant proteins were identified by mass spectrometry. Bioinformatics analysis of miRNAs identified fibrosis, cell proliferation, autophagy, and cell cycle as significant pathways, tRNA analysis was enriched for signaling pathways including FGF, PI3K/AKT and MAPK, whilst protein analysis identified PAX3-FOXO1, MYC and TFGB1 as enriched upstream regulators involved in senescence and cell cycle arrest. Finally, treatment of non-senescent synovial fibroblasts with senescent extracellular vesicles confirmed the bystander effect, inducing senescence in non-senescent cells potentially through down regulation of NF-κβ and cAMP response element signaling pathways thus supporting our hypothesis. Understanding the exact composition of EV-derived small RNAs of senescent cells in this way will inform our understanding of their roles in inflammation, intercellular communication, and as active molecules in the senescence bystander effect

    Sox9 Determines Translational Capacity During Early Chondrogenic Differentiation of ATDC5 Cells by Regulating Expression of Ribosome Biogenesis Factors and Ribosomal Proteins

    Get PDF
    IntroductionIn addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation.MaterialsSox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays.ResultsEarly Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown.ConclusionHere, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate in vivo

    High-Stress Shear-Induced Crystallization in Isotactic Polypropylene and Propylene/Ethylene Random Copolymers

    Get PDF
    Crystallization of an isotactic polypropylene (iPP) homopolymer and two propylene/ethylene random copolymers (RACO), induced by high-stress shear, was studied using in situ synchrotron wide-angle X-ray diffraction (WAXD) at 137 °C. The “depth sectioning” method (Fernandez-Ballester, Journal of Rheology 53:5 (2009), pp. 1229−1254) was applied in order to isolate the contributions of different layers in the stress gradient direction and to relate specific structural evolution to the corresponding local stress. This approach gives quantitative results in terms of the specific length of fibrillar nuclei as a function of the applied stress. As expected, crystallization becomes faster with increasing stress—from the inner to the outer layer—for all three materials. Stress-induced crystallization in a RACO with 7.3 mol % ethylene content was triggered at only 1 °C below its nominal melting temperature. The comparison of iPP and RACO’s with 3.4 and 7.3 mol % ethylene monomer reveals the effect of ethylene defects on high-stress shear induced crystallization at 137 °C. It is found that, for a given applied stress, the specific nuclei length formed by flow increases with ethylene content—which is attributed to a greater high molecular weight tail. However, the linear growth rate is significantly reduced by the presence of ethylene comonomers and it is found that this effect dominates the overall crystallization kinetics. Finally, a time lag is found between development of parent lamellae and the emergence of daughter lamellae, consistent with the concept of daughter lamellae nucleated by homoepitaxy on the lateral faces of existing parent lamellae. Includes supporting information

    Depletion of <i>SNORA33</i> Abolishes ψ of 28S-U4966 and Affects the Ribosome Translational Apparatus

    Get PDF
    Eukaryotic ribosomes are complex molecular nanomachines translating genetic information from mRNAs into proteins. There is natural heterogeneity in ribosome composition. The pseudouridylation (ψ) of ribosomal RNAs (rRNAs) is one of the key sources of ribosome heterogeneity. Nevertheless, the functional consequences of ψ-based ribosome heterogeneity and its relevance for human disease are yet to be understood. Using HydraPsiSeq and a chronic disease model of non-osteoarthritic primary human articular chondrocytes exposed to osteoarthritic synovial fluid, we demonstrated that the disease microenvironment is capable of instigating site-specific changes in rRNA ψ profiles. To investigate one of the identified differential rRNA ψ sites (28S-ψ4966), we generated SNORA22 and SNORA33 KO SW1353 cell pools using LentiCRISPRv2/Cas9 and evaluated the ribosome translational capacity by 35S-Met/Cys incorporation, assessed the mode of translation initiation and ribosomal fidelity using dual luciferase reporters, and assessed cellular and ribosomal proteomes by LC-MS/MS. We uncovered that the depletion of SNORA33, but not SNORA22, reduced 28S-ψ4966 levels. The resulting loss of 28S-ψ4966 affected ribosomal protein composition and function and led to specific changes in the cellular proteome. Overall, our pioneering findings demonstrate that cells dynamically respond to disease-relevant changes in their environment by altering their rRNA pseudouridylation profiles, with consequences for ribosome function and the cellular proteome relevant to human disease

    Hysteropexy in the treatment of uterine prolapse stage 2 or higher: laparoscopic sacrohysteropexy versus sacrospinous hysteropexy—a multicentre randomised controlled trial (LAVA trial)

    No full text
    Objective To investigate whether laparoscopic sacrohysteropexy (LSH) is non-inferior to vaginal sacrospinous hysteropexy (SSHP) in the surgical treatment of uterine prolapse. Design Multicentre randomised controlled, non-blinded non-inferiority trial. Setting Five non-university teaching hospitals in the Netherlands, one university hospital in Belgium. Population 126 women with uterine prolapse stage 2 or higher undergoing surgery without previous pelvic floor surgery. Methods Randomisation in a 1:1 ratio to LSH or SSHP, stratified per centre and severity of the uterine prolapse. The predefined inferiority margin was an increase in surgical failure rate of 10%. Main outcome measures Primary outcome was surgical failure, defined as recurrence of uterine prolapse (POP-Q >= 2) with bothersome bulging/protrusion symptoms and/or repeat surgery or pessary at 12 months postoperatively. Secondary outcomes were anatomical recurrence (any compartment), functional outcome and quality of life. Results Laparoscopic sacrohysteropexy was non-inferior for surgical failure (n = 1, 1.6%) compared with SSHP (n = 2, 3.3%, difference -1.7%, 95% CI: -7.1 to 3.7) 12 months postoperatively. Overall, anatomical recurrences and quality of life did not differ. More bothersome symptoms of overactive bladder (OAB) and faecal incontinence were reported after LSH. Dyspareunia was more frequently reported after SSHP. Conclusion Laparoscopic sacrohysteropexy was non-inferior to SSHP for surgical failure of the apical compartment at 12 months' follow up. Following LSH, bothersome OAB and faecal incontinence were more frequent, but dyspareunia was less frequent. Tweetable abstract Laparoscopic sacrohysteropexy and vaginal sacrospinous hysteropexy have equally good short-term outcomes
    corecore