15 research outputs found

    Iron Age occupation evidence from Port Lobh, Colonsay (Scottish Inner Hebrides)

    Get PDF
    Evidence of a new Iron Age occupation site is presented from a site located at the southern edge of a former tidal estuary in western Colonsay. A radiocarbon date of between the 1st–2nd centuries BC is significant in a regional context, being the first of this period from the island. Recovered burnt occupation debris includes cattle bone, marine (limpet and periwinkle) shell and ceramics along with a terrestrial snail shell and carbonised macroplant assemblage. The site was identified from geophysical survey (magnetometry and resistivity) focused at an earlier 5th–4th millennia BC shell midden. The discovery highlights the value of alternative field techniques and looking beyond fortified sites to find more elusive settlement evidence

    Examination of Late Palaeolithic archaeological sites in northern Europe for the preservation of cryptotephra layers

    Get PDF
    We report the first major study of cryptotephra (non-visible volcanic ash layers) on Late Palaeolithic archaeological sites in northern Europe. Examination of 34 sites dating from the Last Termination reveals seven with identifiable cryptotephra layers. Preservation is observed in minerogenic and organic deposits, although tephra is more common in organic sediments. Cryptotephra layers normally occur stratigraphically above or below the archaeology. Nearby off-site palaeoclimate archives (peat bogs and lakes <0.3 km distant) were better locations for detecting tephra. However in most cases the archaeology can only be correlated indirectly with such cryptotephras. Patterns affecting the presence/absence of cryptotephra include geographic position of sites relative to the emitting volcanic centre; the influence of past atmospherics on the quantity, direction and patterns of cryptotephra transport; the nature and timing of local site sedimentation; sampling considerations and subsequent taphonomic processes. Overall, while tephrostratigraphy has the potential to improve significantly the chronology of such sites many limiting factors currently impacts the successful application

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    Radiocarbon, calibration, and the chronology of the Late Minoan IB phase

    No full text
    The absolute chronology of the beginning of the Aegean Late Bronze Age has been a source of controversy, debate, and frustration for a generation. We present a set of radiocarbon dates on short-lived samples produced by the Oxford Radiocarbon Laboratory from Late Minoan (LM) IB contexts on Crete collected in an attempt to resolve this problem. We argue that they provide important new evidence suggesting the close of the LM IB phase <i>c</i>. 1525–1490bc. This provides strong evidence for a revised, “high”, chronology for the LM IB phase

    Neanderthal climate preferences and tolerances: the need for a better chronology

    No full text
    This project aimed to investigate whether the present chronological data for late Mousterian sites in Europe are biasing our perception of Neanderthal populations by making them appear more cold-adapted than the incoming anatomically modern Early Upper Palaeolithic humans. In this study we focused on the part of the Neanderthal world that experienced the most continental climatic environments - namely, European Russia north of the Black Sea - for it is in such a region that the environmental preferences, in particular tolerance to temperature, are most discernible. By applying a series of cross-validated non-14C chronological methodologies (OSL, TL, palaeomagnetic intensity, and tephrostratigraphy) to late Middle Palaeolithic assemblages the project sought to identify spatial and temporal patterning which, when correlated with local environmental proxies and wider climate data, would provide a better understanding of Neanderthal climate tolerances. The project has produced a suite of new age determinations from a selection of archaeological sites that had previously undergone investigation and which were available to sample without requiring new excavations; the corresponding data on the cultural, lithic and environmental associations of the new age measurements derive mostly from earlier existing studies

    Tephrostratigraphy of a Lateglacial lake sediment at Wegliny, southwest Poland

    No full text
    This paper presents the first late Quaternary locality in the present-day territories of Poland where multiple cryptotephra layers have been identified. Located near W?gliny in southwest Poland, study of the Lateglacial gyttja deposits reveals the presence of at least four non-visible tephra horizons. Electron microprobe and laser-ablation ICPMS analysis of glass shards suggests products from at least two Icelandic volcanic centres: Katla and Snæsfellsness. Of particular importance is the discovery of two eruptions believed to originate from the east Eifel volcanic field within the Allerød chronozone. One correlates with the well documented Laacher See Tephra (LST) but the second horizon, herein designated T642/T655 would appear to represent an earlier precursor eruption. The chemical composition of the LST and the precursor tephra both appear to match to the Upper Laacher See Tephra (ULST) phase, which previously was thought to have dispersed not to the northeast but in a southerly direction, towards the Alpine foreland. This indicates the eruption dynamics of the Laacher See are more complex than hitherto recognised
    corecore