33 research outputs found

    The Undergraduate CubeSat Experience at the University of Minnesota

    Get PDF
    Building a satellite is a large undertaking with a lot of moving parts. Undergraduate students have complicated schedules with even more moving parts. Running a team of 60+ undergraduates toward the goal of launching a satellite is therefore quite the managerial challenge. Detailed on this poster are some specific challenges, along with strategies for mitigating them, that the UMN Small Satellite Research Lab faces in their work toward launching two small satellites

    Could the 2012 Drought in Central U. S. Have Been Anticipated?

    Get PDF
    This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NEWS (NASA (National Aeronautics and Space Administration) Energy and Water cycle Study) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Plains. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains

    Could the 2012 Drought in Central U.S. Have Been Anticipated? A Review of NASA Working Group Research

    Get PDF
    This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains

    SLAPex Freeze/Thaw 2015: The First Dedicated Soil Freeze/Thaw Airborne Campaign

    Get PDF
    Soil freezing and thawing is an important process in the terrestrial water, energy, and carbon cycles, marking the change between two very different hydraulic, thermal, and biological regimes. NASA's Soil Moisture Active/Passive (SMAP) mission includes a binary freeze/thaw data product. While there have been ground-based remote sensing field measurements observing soil freeze/thaw at the point scale, and airborne campaigns that observed some frozen soil areas (e.g., BOREAS), the recently-completed SLAPex Freeze/Thaw (F/T) campaign is the first airborne campaign dedicated solely to observing frozen/thawed soil with both passive and active microwave sensors and dedicated ground truth, in order to enable detailed process-level exploration of the remote sensing signatures and in situ soil conditions. SLAPex F/T utilized the Scanning L-band Active/Passive (SLAP) instrument, an airborne simulator of SMAP developed at NASA's Goddard Space Flight Center, and was conducted near Winnipeg, Manitoba, Canada, in October/November, 2015. Future soil moisture missions are also expected to include soil freeze/thaw products, and the loss of the radar on SMAP means that airborne radar-radiometer observations like those that SLAP provides are unique assets for freeze/thaw algorithm development. This paper will present an overview of SLAPex F/T, including descriptions of the site, airborne and ground-based remote sensing, ground truth, as well as preliminary results

    Analysis of Soil Freeze/Thaw Signatures During Slapex F/T Campaign

    Get PDF
    Permanently frozen and seasonally frozen soils occur over a large portion of the Earth's land surface. Changes in the freeze/thaw state of the land surface reflects major changes in thermal and hydraulic properties as well as acting as a "switch" for many ecological processes. In short, soil freeze/thaw state is a fundamental land surface variable in the water and energy cycles, and it connects to the carbon cycle. Surface freeze/thaw state is observable by passive and active microwave sensors. For example, NASA's Soil Moisture Active Passive (SMAP) mission includes a freeze/thaw data product. Such satellite sensing offers routine all-season and all-weather global observations of soil freeze/thaw state with the application of suitable algorithms. We describe early finding from the SLAPex Freeze/Thaw campaign, believed to be the first airborne campaign of its type, focusing on soil freeze/thaw

    Multilateral Environmental Agreements in the WTO: Silence Speaks Volumes*

    Get PDF
    Abstract This study contributes to the debate concerning the appropriate role of multilateral environmental agreements (MEAs) in in WTO dispute settlement. Its distinguishing feature is that it seeks to address this relationship in light of the reason why the parties have chosen to separate their obligations into two bodies of law without providing an explicit nexus between them. The basic conclusion is that legislators' silence concerning this relationship should speak volumes to WTO adjudicating bodies: MEAs should not be automatically understood as imposing legally binding obligations on WTO Members, but could be used as sources of factual information

    The multiple-vortex structure of the El Reno, Oklahoma, Tornado on 31 May 2013

    No full text
    © 2018 American Meteorological Society. This study documents the formation and evolution of secondary vortices associated within a large, violent tornado in Oklahoma based on data from a close-range, mobile, polarimetric, rapid-scan, X-band Doppler radar. Secondary vortices were tracked relative to the parent circulation using data collected every 2 s. It was found that most long-lived vortices (those that could be tracked for ≥15 s) formed within the radius of maximum wind (RMW), mainly in the left-rear quadrant (with respect to parent tornado motion), passing around the center of the parent tornado and dissipating closer to the center in the right-forward and left-forward quadrants. Some secondary vortices persisted for at least 1 min. When a Burgers-Rott vortex is fit to the Doppler radar data, and the vortex is assumed to be axisymmetric, the secondary vortices propagated slowly against the mean azimuthal flow; if the vortex is not assumed to be axisymmetric as a result of a strong rear-flank gust front on one side of it, then the secondary vortices moved along approximately with the wind
    corecore