25 research outputs found
A DETAILED PHOTOMETRIC AND SPECTROSCOPIC STUDY OF THE 2011 OUTBURST OF THE RECURRENT NOVA T Pyxidis FROM 0.8 TO 250 DAYS AFTER DISCOVERY
We investigated the optical light curve of T Pyx during its 2011 outburst through compiling a database of Solar Mass Ejection Imager (SMEI) and AAVSO observations. The SMEI light curve, providing unprecedented detail covering t=1.5-49 days post-discovery, was divided into four phases based on the idealised nova optical light curve; the initial rise (1.5-3.3 days), the pre-maximum halt (3.3-13.3 days), the final rise (14.7-27.9 days), and the early decline (27.9 days - -). The SMEI light curve contains a strongly detected period of 1.44_0.05 days during the pre-maximum halt phase. These oscillations resemble those found in recent TNR models arising from instabilities in the expanding envelope. No spectral variations that mirror the light curve periodicity were found however. The marked dip at t_22-24 days just before light curve maximum at t=27.9 days may represent the same (shorter duration) phenomenon seen in other novae observed by SMEI and present in some model light curves. The spectra from the 2m Liverpool Telescope and SMARTS 1.5m telescope were obtained from t=0.8-80.7 and 155.1-249.9 days, covering the major phases of development. The nova was observed very early in its rise where a distinct high velocity ejection phase was evident with derived Vej_4000 km
Spectroscopic and Photometric Development of T Pyxidis (2011) from 0.8 to 250 Days After Discovery
We investigated the optical light curve of T Pyx during its 2011 outburst through compiling a database of SMEI and AAVSO observations. The SMEI light curve, providing unprecedented detail with high cadence data during t=1.5-49 days post-discovery, was divided into four phases based on the idealised nova optical light curve; the initial rise, the pre-maximum halt (or the 'plateau'), the final rise, and the early decline. Variation in the SMEI light curve reveals a strongly detected period of 1.44\pm0.04 days before the visual maximum. The spectra from the LT and SMARTS telescopes were investigated during t=0.8-80.7 and 155.1-249.9 days. The nova was observed very early in its rise and a distinct high velocity ejection phase was evident. A marked drop and then gradual increase in derived ejection velocities were present. Here we propose two different stages of mass loss, a short-lived phase occurring immediately after outburst followed by a more steadily evolving and higher mass loss phase. The overall spectral development follows that typical of a Classical Nova and comparison to the photometric behaviour reveals consistencies with the simple evolving pseudo-photosphere model of the nova outburst. The optical spectra are also compared to X-ray and radio light curves. Weak [Fe X] 6375A emission was marginally detected before the rise in X-ray emission. The middle of the plateau in the X-ray light curve is coincident with the appearance of high ionization species detected in optical spectra and the peak of the high frequency radio flux
HUBBLE SPACE TELESCOPE OBSERVATIONS OF THE AFTERGLOW, SUPERNOVA, AND HOST GALAXY ASSOCIATED WITH THE EXTREMELY BRIGHT GRB 130427A
We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (Eiso > 1054 erg):more luminous than any previous GRB with a spectroscopically associated SN.We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light~17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph ~ 15,000 km s-1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph ~ 30,000 km s-1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1M_ yr-1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy
Recommended from our members
An Ultra Deep Field survey with WFIRST
Studying the formation and evolution of galaxies at the earliest cosmic
times, and their role in reionization, requires the deepest imaging possible.
Ultra-deep surveys like the HUDF and HFF have pushed to mag \mAB30,
revealing galaxies at the faint end of the LF to 911 and
constraining their role in reionization. However, a key limitation of these
fields is their size, only a few arcminutes (less than a Mpc at these
redshifts), too small to probe large-scale environments or clustering
properties of these galaxies, crucial for advancing our understanding of
reionization. Achieving HUDF-quality depth over areas 100 times larger
becomes possible with a mission like the Wide Field Infrared Survey Telescope
(WFIRST), a 2.4-m telescope with similar optical properties to HST, with a
field of view of 1000 arcmin, 100 the area of the
HST/ACS HUDF.
This whitepaper motivates an Ultra-Deep Field survey with WFIRST, covering
100300 the area of the HUDF, or up to 1 deg, to
\mAB30, potentially revealing thousands of galaxies and AGN at the
faint end of the LF, at or beyond \,\,910 in the epoch of
reionization, and tracing their LSS environments, dramatically increasing the
discovery potential at these redshifts.
(Note: This paper is a somewhat expanded version of one that was submitted as
input to the Astro2020 Decadal Survey, with this version including an Appendix
(which exceeded the Astro2020 page limits), describing how the science drivers
for a WFIRST Ultra Deep Field might map into a notional observing program,
including the filters used and exposure times needed to achieve these depths.
The Dark Energy Survey supernova programme: modelling selection efficiency and observed core-collapse supernova contamination
The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accurate photometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes an essential step for training and testing photometric classification algorithms, and for correcting biases introduced by selection effects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-series spectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies to construct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark Energy Survey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations. We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data. We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and before photometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation, we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 per cent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveys without fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmology analysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associated systematic uncertainty
Binary systems and their nuclear explosions
Peer ReviewedPreprin