9 research outputs found

    Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.

    No full text
    The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events

    The Influences of the Atlantic Multidecadal Oscillation on the Mean Strength of the North Pacific Subtropical High during Boreal Winter

    No full text
    The Atlantic multidecadal oscillation (AMO) has been shown to be capable of exerting significant influences on the Pacific climate. In this study, the authors analyze reanalysis datasets and conduct forced and coupled experiments with an atmospheric general circulation model (AGCM) to explain why the winter North Pacific subtropical high strengthens and expands northwestward during the positive phase of the AMO. The results show that the tropical Atlantic warming associated with the positive AMO phase leads to a westward displacement of the Pacific Walker circulation and a cooling of the tropical Pacific Ocean, thereby inducing anomalous descending motion over the central tropical Pacific. The descending motion then excites a stationary Rossby wave pattern that extends northward to produce a nearly barotropic anticyclone over the North Pacific. A diagnosis based on the quasigeostrophic vertical velocity equation reveals that the stationary wave pattern also results in enhanced subsidence over the northeastern Pacific via the anomalous advections of vorticity and temperature. The anomalous barotropic anticyclone and the enhanced subsidence are the two mechanisms that increase the sea level pressure over the North Pacific. The latter mechanism occurs to the southeast of the former one and thus is more influential in the subtropical high region. Both mechanisms can be produced in forced and coupled AGCMs but are displaced northward as a result of stationary wave patterns that differ from those observed. This explains why the model-simulated North Pacific sea level pressure responses to the AMO tend to be biased northward

    A Source of AGCM Bias in Simulating the Western Pacific Subtropical High: Different Sensitivities to the Two Types of ENSO

    No full text
    This study reveals a possible cause of model bias in simulating the western Pacific subtropical high (WPSH) variability via an examination of an Atmospheric Model Intercomparison Project (AMIP) simulation produced by the atmospheric general circulation model (AGCM) developed at Taiwan's Central Weather Bureau (CWB). During boreal summer, the model overestimates the quasi-biennial (2-3 yr) band of WPSH variability but underestimates the low-frequency (3-5 yr) band of variability. The overestimation of the quasi-biennial WPSH sensitivity is found to be due to the model's stronger sensitivity to the central Pacific El Niño-Southern Oscillation (CP ENSO) that has a leading periodicity in the quasi-biennial band. The model underestimates the low-frequency WPSH variability because of its weaker sensitivity to the eastern Pacific (EP) ENSO that has a leading periodicity in the 3-5-yr band. These different model sensitivities are shown to be related to the relative strengths of the mean Hadley and Walker circulations simulated in the model. An overly strong Hadley circulation causes the CWB AGCM to be overly sensitive to the CP ENSO, while an overly weak Walker circulation results in a weak sensitivity to the EP ENSO. The relative strengths of the simulated mean Hadley and Walker circulations are critical to a realistic simulation of the summer WPSH variability in AGCMs. This conclusion is further supported using AMIP simulations produced by three other AGCMs, including the CanAM4, GISS-E2-R, and IPSL-CM5A-MR models

    Carceplexes and Hemicarceplexes

    No full text
    corecore