157 research outputs found
Rare Primary Central Nervous System Tumors in Adults: An Overview
Overall, tumors of primary central nervous system (CNS) are quite common in adults with an incidence rate close to 30 new cases/100,000 inhabitants per year. Significant clinical and biological advances have been accomplished in the most common adult primary CNS tumors (i.e., diffuse gliomas). However, most CNS tumor subtypes are rare with an incidence rate below the threshold defining rare disease of 6.0 new cases/100,000 inhabitants per year. Close to 150 entities of primary CNS tumors have now been identified by the novel integrated histomolecular classification published by the World Health Organization (WHO) and its updates by the c-IMPACT NOW consortium (the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy). While these entities can be better classified into smaller groups either by their histomolecular features and/or by their location, assessing their treatment by clinical trials and improving the survival of patients remain challenging. Despite these tumors are rare, research, and advances remain slower compared to diffuse gliomas for instance. In some cases (i.e., ependymoma, medulloblastoma) the understanding is high because single or few driver mutations have been defined. The European Union has launched European Reference Networks (ERNs) dedicated to support advances on the clinical side of rare diseases including rare cancers. The ERN for rare solid adult tumors is termed EURACAN. Within EURACAN, Domain 10 brings together the European patient advocacy groups (ePAGs) and physicians dedicated to improving outcomes in rare primary CNS tumors and also aims at supporting research, care and teaching in the field. In this review, we discuss the relevant biological and clinical characteristics, clinical management of patients, and research directions for the following types of rare primary CNS tumors: medulloblastoma, pineal region tumors, glioneuronal and rare glial tumors, ependymal tumors, grade III meningioma and mesenchymal tumors, primary central nervous system lymphoma, germ cell tumors, spinal cord tumors and rare pituitary tumors
Interleukin-6 gene amplification and shortened survival in glioblastoma patients
Interleukin-6 (IL-6) is known to promote tumour growth and survival. We evaluated IL-6 gene amplification in tumours from 53 glioma patients using fluorescence in situ hybridisation. Amplification events were detected only in glioblastomas (15 out of 36 cases), the most malignant tumours, and were significantly associated with decreased patient survival
Exposure to Maternal Diabetes Induces Salt-Sensitive Hypertension and Impairs Renal Function in Adult Rat Offspring
OBJECTIVE—Epidemiological and experimental studies have led to the hypothesis of fetal origin of adult diseases, suggesting that some adult diseases might be determined before birth by altered fetal development. We have previously demonstrated in the rat that in utero exposure to maternal diabetes impairs renal development leading to a reduction in nephron number. Little is known on the long-term consequences of in utero exposure to maternal diabetes. The aim of the study was to assess, in the rat, long-term effects of in utero exposure to maternal diabetes on blood pressure and renal function in adulthood
Correlation of IDH1 Mutation with Clinicopathologic Factors and Prognosis in Primary Glioblastoma: A Report of 118 Patients from China
It has been reported that IDH1 (IDH1R132) mutation was a frequent genomic alteration in grade II and grade III glial tumors but rare in primary glioblastoma (pGBM). To elucidate the frequency of IDH1 mutation and its clinical significance in Chinese patients with pGBM, one hundred eighteen pGBMs were assessed by pyro-sequencing for IDH1 mutation status, and the results were correlated with clinical characteristics and molecular pathological factors. IDH1 mutations were detected in 19/118 pGBM cases (16.1%). Younger age, methylated MGMT promoter, high expression of mutant P53 protein, low expression of Ki-67 or EGFR protein were significantly correlated with IDH1 mutation status. Most notably, we identified pGBM cases with IDH1 mutation were mainly involved in the frontal lobe when compared with those with wild-type IDH1. In addition, Kaplan-Meier survival analysis revealed a highly significant association between IDH1 mutation and a better clinical outcome (p = 0.026 for progression-free survival; p = 0.029 for overall survival). However, in our further multivariable regression analysis, the independent prognostic effect of IDH1 mutation is limited when considering age, preoperative KPS score, extent of resection, TMZ chemotherapy, and Ki-67 protein expression levels, which might narrow its prognostic power in Chinese population in the future
Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival
<p>Abstract</p> <p>Background</p> <p>Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival.</p> <p>Methods</p> <p>A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers.</p> <p>Results</p> <p>A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively) or with other cancers (10, 19, and 15 genes, respectively) and the rest (16, 4, and 10 genes, respectively) are novel associations. <it>Pik3r1</it>, <it>E2f3, Akr1c3</it>, <it>Csf1</it>, <it>Jag2</it>, <it>Plcg1</it>, <it>Rpl37a</it>, <it>Sod2</it>, <it>Topors</it>, <it>Hras</it>, <it>Mdm2, Camk2g</it>, <it>Fstl1</it>, <it>Il13ra1</it>, <it>Mtap </it>and <it>Tp53 </it>were associated with multiple survival events.</p> <p>Most genes (from 90 to 96%) were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for <it>Syne1</it>, <it>Pdcd4</it>, <it>Ighg1</it>, <it>Tgfa</it>, <it>Pla2g7</it>, and <it>Paics</it>. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. <it>C2</it>, <it>Egfr</it>, <it>Prkcb</it>, <it>Igf2bp3</it>, and <it>Gdf10 </it>had gender-dependent associations; <it>Sox10</it>, <it>Rps20</it>, <it>Rab31</it>, and <it>Vav3 </it>had race-dependent associations; <it>Chi3l1</it>, <it>Prkcb</it>, <it>Polr2d</it>, and <it>Apool </it>had therapy-dependent associations. Biological processes associated glioblastoma survival included morphogenesis, cell cycle, aging, response to stimuli, and programmed cell death.</p> <p>Conclusions</p> <p>Known biomarkers of glioblastoma survival were confirmed, and new general and clinical-dependent gene profiles were uncovered. The comparison of biomarkers across glioblastoma phases and functional analyses offered insights into the role of genes. These findings support the development of more accurate and personalized prognostic tools and gene-based therapies that improve the survival and quality of life of individuals afflicted by glioblastoma multiforme.</p
Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations
Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood
SFE/SFHTA/AFCE Consensus on Primary Aldosteronism, part 2: First diagnostic steps.
In patients with suspected primary aldosteronism (PA), the first diagnostic step, screening, must have high sensitivity and negative predictive value. The aldosterone-to-renin ratio (ARR) is used because it has higher sensitivity and lower variability than other measures (serum potassium, plasma aldosterone, urinary aldosterone). ARR is calculated from the plasma aldosterone (PA) and plasma renin activity (PRA) or direct plasma renin (DR) values. These measurements must be taken under standard conditions: in the morning, more than 2hours after awakening, in sitting position after 5 to 15minutes, with normal dietary salt intake, normal serum potassium level and without antihypertensive drugs significantly interfering with the renin-angiotensin-aldosterone system. To rule out ARR elevation due to very low renin values, ARR screening is applied only if aldosterone is>240pmol/l (90pg/ml); DR values<5mIU/l are assimilated to 5mIU/l and PRA values<0.2ng/ml/h to 0.2ng/ml/h. We propose threshold ARR values depending on the units used and a conversion factor (pg to mIU) for DR. If ARR exceeds threshold, PA should be suspected and exploration continued. If ARR is below threshold or if plasma aldosterone is<240pmol/l (90pg/ml) on two measurements, diagnosis of PA is excluded
- …