43 research outputs found

    A Linear LMP Model for Active and Reactive Power with Power Loss

    Full text link
    Pricing the reactive power is more necessary than ever before because of the increasing challenge of renewable energy integration on reactive power balance and voltage control. However, reactive power price is hard to be efficiently calculated because of the non-linear nature of optimal AC power flow equation. This paper proposes a linear model to calculate active and reactive power LMP simultaneously considering power loss. Firstly, a linearized AC power flow equation is proposed based on an augmented Generation Shift Distribution Factors (GSDF) matrix. Secondly, a linearized LMP model is derived using GSDF and loss factors. The formulation of LMP is further decomposed into four components: energy, congestion, voltage limitation and power loss. Finally, an iterate algorithm is proposed for calculating LMP with the proposed model. The performance of the proposed model is validated by the IEEE-118 bus system.Comment: 6 pages, 6 figures, accepted by IEEE Sustainable Power & Energy Conference (iSPEC2019

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Manufacture of controlled emulsions and particulates using membrane emulsification

    Get PDF
    Crossflow and rotating membrane emulsification techniques were used for making oil-in-water (O/W) emulsions. The emulsions produced from a variety of oils and monomers (viscosity 7–528 mPas) exhibited narrow size distributions over a wide droplet size range, with the average droplet size ranging from less than 1 µm up to 500 µm. The monomer emulsions were further encapsulated to produce microcapsules through subsequent polymerisation reactions. The monodispersity feature of the primary emulsions was retained after the encapsulation. In comparison with other homogenisation methods, our experimental results demonstrated that the membrane emulsification technique is not only superior in emulsion droplet size controls, but also advantageous in energy efficiency and industrial-scale productions

    Sparse Oblique Decision Tree for Power System Security Rules Extraction and Embedding

    No full text

    Changes in Air Quality from the COVID to the Post-COVID Era in the Beijing-Tianjin-Tangshan Region in China

    No full text
    This article discussed air quality changes in the Beijing-Tianjin-Tangshan (BTT) region. The air quality index (AQI) values, and the concentrations of PM2.5, PM10, SO2, CO, NO2, and O-3 in the BTT region during the COVID-19 outbreak in 2020 were, respectively, 79.4, 47.2 mu g m(-3), 73.4 mu g m(-3), 10.3 mu g m(-3), 0.87 mg m(-3), 33.6 mu g m(-3), and 90.7 mu g m(-3). However, they were, respectively, 102.7, 61.4 mu g m(-3), 121.0 mu g m(-3), 9.0 mu g m(-3), 0.88 mg m(-3), 40.1 mu g m(-3), and 84.0 mu g m(-3) during the same period in 2021, which is an increase of 29.2%, 30.1%, 64.8%, -12.9%, 1.94 %, 19.5%, and -7.4% compared with the values in 2020. The combined proportions of grade I and grade II during the COVID-19 outbreak in 2020 were 16.7% higher than those in the same period in 2021, so the air quality has deteriorated rapidly from 2020 to the post-COVID era in 2021. The possible reasons for poorer air quality are that the frequency of dusty weather and air pollutant discharge has increased, and meteorological conditions have been relatively unfavorable. The average AQI values, and concentrations of PM2.5, PM10, SO2, CO, NO2, and O-3 during the post-COVID period in 2021 respectively decreased by 14.8%, 29.0%, 14.6%, 22.5%, 37.4%, 14.8%, and 8.7%, compared with those in 2020. It is also worth noting that all the changes in air pollution during the post-COVID era have been consistent. The combined proportions of grade I and grade II during post-COVID period in 2021 were 18.4% higher than those during the same period of 2020, which indicates that the air quality during post-COVID 2021 has obviously improved compared with those in the same period of 2020. The possible reasons are a series of clean air policies and clean air actions, as well as favorable atmospheric diffusion conditions. These results indicate that clean air policies play a very important role in improving air quality

    Computational Identification of MicroRNAs from the Expressed Sequence Tags of Toxic Dinoflagellate

    Get PDF
    Micro ribonucleic acids (miRNAs) represent a class of small noncoding RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or by repressing mRNA translation. In the case of algal lineages, especially dinoflagellates, knowledge regarding the miRNA system is still limited and its regulatory role remains unclear. In the present study, a computational approach was employed to screen miRNAs from the expressed sequence tags (ESTs) of Alexandrium tamarense . A total of 18 potential miRNAs were identified according to a range of filtering criteria. In addition, unique evolutionary features, such as miRNA gene duplication and sequence similarity to metazoan miRNAs, implied that the miRNA system in dinoflagellates is complex. Moreover, based on these 18 miRNA sequences, 42 potential target genes showing diverse functions in regulating growth and development were predicted in Thalassiosira pseudonana and Phaeodactylum tricornutum . Taken together, our data suggest the existence of miRNAs in dinoflagellates and provide clues for further functional studies on these predicted miRNAs

    Characteristics and sources of amine-containing particles in the urban atmosphere of Liaocheng, a seriously polluted city in North China during the COVID-19 outbreak

    No full text
    The Chinese government issued an unprecedentedly strict lockdown policy to control the spread of the novel coronavirus disease 2019 (COVID-19), significantly mitigating air pollution because of the dramatic reduction of industrial and traffic emissions. To explore the impact of COVID-19 lockdown (LCD) on organic aerosols, the mixing states and evolution processes of amine-containing particles were studied using a single particle aerosol mass spectrometer from January to March 2020 in Liaocheng, which is a seriously polluted city in North China. The counts and percentages of amine-containing particles in total obtained particles during the pre-LCD (547832, 29.8 %) were higher than those during the LCD (283983, 20.7 %) and post-LCD (102026, 18.4 %), mainly due to the reduced emission strength of amines and suppressed gas-to-particle partitioning of amines during the LCD and post-LCD. (74)(C2H5)(2)NH2+ was the most abundant amine marker, which accounted for 98.2 %, 98.4 %, and 96.7 % of all amine-containing particles during the pre-LCD, LCD, and post-LCD, respectively. Correlation analysis and temporal variations indicated that the gas-to-particle partitioning of amines was facilitated by the stronger acidic environment and lower temperature, while the effect of RH and aerosol liquid water content was minor. The A-OC particles were the most abundant type (accounting for similar to 40 %) throughout the observation period. The temporal profiles and correlation analysis suggested that the impact of the increased O-3 on the amines and their oxidation products (e.g., trimethylamine oxide) was minor. The identified particle types, correlation analysis, and the potential source contribution function results implied that the amine-containing particles were mainly derived from local and surrounding sources during the LCD, while those were mainly affected by long-range transport during the pre-LCD and post-LCD. Our results could deepen the comprehension of the sources and atmospheric processing of amines in the urban area of North China during the COVID-19 outbreak
    corecore