56 research outputs found

    Fabrication of long-life quasi-solid-state Na-CO2 battery by formation of Na2C2O4 discharge product

    Get PDF
    Rechargeable Na-CO2 batteries are promising energy-storage devices due to their high energy density, environmental friendliness, and cost effectiveness. However, the insulating nature and irreversibility of the Na2CO3 discharge product cause large polarization and poor cyclicity. Here, we report a reversible quasi-solid-state Na-CO2 battery that is constructed by the synergistic action of a Co-encapsulated N-doped carbon framework catalyst and gel electrolyte to ensure the formation of a highly reversible Na2C2O4 discharge product. Experiments and density functional theory calculations indicate that the electron-agglomeration effect of Co nanoparticles enhances CO2 adsorption and lowers energy barrier, as well as promotes Na2C2O4 generation. A gel electrolyte containing an imidazole organic cation is used to inhibit the decomposition of the thermodynamically unstable Na2C2O4. The fabricated Na-CO2 battery exhibits a high discharge capacity of 3,094 mAh g^-1, a high-rate performance of 1,777 mAh g^-1 at a current density of 0.5 mA cm^-2, and excellent cycling performance of 366 cycles (2,200 h)

    PD-1 blockade in recurrent or metastatic cervical cancer: Data from cemiplimab phase I expansion cohorts and characterization of PD-L1 expression in cervical cancer

    Get PDF
    Objectives: To characterize the safety, tolerability, and anti-tumor activity of cemiplimab as monotherapy or in combination with hypofractionated radiation therapy (hfRT) in patients with recurrent or metastatic cervical cancer. To determine the association between histology and programmed death-ligand 1 (PD-L1) expression. Methods: In non-randomized phase I expansion cohorts, patients (squamous or non-squamous histology) received cemiplimab 3 mg/kg intravenously every 2 weeks for 48 weeks, either alone (monotherapy cohort) or with hfRT during week 2 (combination cohort). Due to insufficient tissue material, PD-L1 protein expression was evaluated in commercially purchased samples and mRNA expression levels were analyzed from The Cancer Genome Atlas (TCGA). Results: Twenty patients enrolled in both cohorts in total; 10 had squamous histology. The most common adverse events of any grade were diarrhea, fatigue, and hypokalemia, occurring in 35%, 25%, and 25%, respectively. Objective response rate was 10% in each cohort; responders had squamous histology. Duration of response was 11.2 months and 6.4 months for the responder in the monotherapy and combination cohort, respectively. Irradiated lesions were not included in the response assessments. In separate archived specimens (N = 155), PD-L1 protein expression in tumor and immune cells was negative (<1%) more commonly in adenocarcinoma than in squamous tumors. PD-L1 mRNA levels were lower in adenocarcinoma than squamous cell tumors (1.2 vs 5.0 mean transcripts per million, respectively) in TCGA. Conclusions: Cemiplimab has activity in cervical squamous cell carcinoma. The phase I results, combined with results from other anti-PD-1 trials in cervical cancer and our biomarker analyses have informed the design of the ongoing phase III trial, with the primary overall survival hierarchical analyses being done first in patients with squamous histology

    Enhanced Electrical Conductivity of Cellulose Nanofiber/Graphene Composite Paper with a Sandwich Structure

    No full text
    A novel conductive paper based on cellulose nanofiber (CNF) and reduced graphene oxide (RGO) with a sandwich structure was successfully prepared through step-by-step vacuum filtration followed by a chemical reduction process in which a CNF layer is sandwiched between two thin RGO layers. This unique design strategy not only provides a highly conductive network for its surface but also maintains the structural integrity of CNF. The sandwich-structured paper exhibits a significantly conductive anisotropy, and the in-plane electrical conductivity is drastically enhanced as 4382 S m<sup>–1</sup> with only 4 wt % RGO, whereas it is insulating along the cross-plane direction. This can be attributed to the RGO layers at the top and bottom surface connected in parallel. This high electrical conductivity is greatly superior to most of the cellulose/graphene composite papers obtained by conventional blending processes. Compared with the similar layer-by-layer assembly technique, the present method is more feasible and time saving. Moreover, the sandwich-structured paper shows excellent mechanical strength and good flexibility, which may facilitate its applications in future flexible electronics

    Cationicity-Enhanced Analogues of the Antimicrobial Peptides, AcrAP1 and AcrAP2, from the Venom of the Scorpion, Androctonus crassicauda, Display Potent Growth Modulation Effects on Human Cancer Cell Lines

    Get PDF
    The non disulphide-bridged peptides (NDBPs) of scorpion venoms are attracting increased interest due to their structural heterogeneity and broad spectrum of biological activities. Here, two novel peptides, named AcrAP1 and AcrAP2, have been identified in the lyophilised venom of the Arabian scorpion, Androctonus crassicauda, through “shotgun” molecular cloning of their biosynthetic precursor-encoding cDNAs. The respective mature peptides, predicted from these cloned cDNAs, were subsequently isolated from the same venom sample using reverse phase HPLC and their identities were confirmed by use of mass spectrometric techniques. Both were found to belong to a family of highly-conserved scorpion venom antimicrobial peptides - a finding confirmed through the biological investigation of synthetic replicates. Analogues of both peptides designed for enhanced cationicity, displayed enhanced potency and spectra of antimicrobial activity but, unlike the native peptides, these also displayed potent growth modulation effects on a range of human cancer cell lines. Thus natural peptide templates from venom peptidomes can provide the basis for rational analogue design to improve both biological potency and spectrum of action. The diversity of such templates from such natural sources undoubtedly provides the pharmaceutical industry with unique lead compounds for drug discovery

    AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antimicrobial and Anticancer Activities

    Get PDF
    The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation

    Facile synthesis of Ni 3

    No full text

    Zn 2

    No full text

    Propensity score matching analysis to comparing cisplatin versus nedaplatin based doublet agent concurrent chemoradiotherapy for locally advanced cervical cancer

    No full text
    Abstract This study evaluated the efficacy and safety of cisplatin and nedaplatin in three-week doublet agent concurrent chemoradiotherapy (CCRT) for patients with locally advanced cervical cancer (LACC). We retrospectively enrolled patients with stage IIB-IIIC2 cervical cancer who received doublet agent CCRT from January 2015 to December 2020. Clinical outcomes were analyzed using the Kaplan–Meier method and a Cox proportional hazards model. Propensity score (PS) matching analysis was used to compare cisplatin plus docetaxel group and nedaplatin plus docetaxel group. A total of 295 patients were included. The 5-year overall survival rate (OS) and progression free survival rate (PFS) were 82.5% and 80.4%, respectively. After PS matching, there were 83 patients each in the nedaplatin group and cisplatin group. There were no significant differences in objective response rates (97.6% and 98.8%, p = 0.212), 5-year OS rate (96.5 vs 69.8, p = 0.066), PFS rate (90.8 vs 72.4, p = 0.166), and toxicity between the two groups. Doublet agent concurrent chemoradiotherapy is feasible, safe, and shows high efficacy in LACC patients. Here, cisplatin group has a trend of better prognosis, suggesting that cisplatin is preferred and nedaplatin can be considered for replacement when cisplatin is intolerant
    • …
    corecore