4,009 research outputs found

    Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    Get PDF
    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design

    Optimal cure cycle design of a resin-fiber composite laminate

    Get PDF
    A unified computed aided design method was studied for the cure cycle design that incorporates an optimal design technique with the analytical model of a composite cure process. The preliminary results of using this proposed method for optimal cure cycle design are reported and discussed. The cure process of interest is the compression molding of a polyester which is described by a diffusion reaction system. The finite element method is employed to convert the initial boundary value problem into a set of first order differential equations which are solved simultaneously by the DE program. The equations for thermal design sensitivities are derived by using the direct differentiation method and are solved by the DE program. A recursive quadratic programming algorithm with an active set strategy called a linearization method is used to optimally design the cure cycle, subjected to the given design performance requirements. The difficulty of casting the cure cycle design process into a proper mathematical form is recognized. Various optimal design problems are formulated to address theses aspects. The optimal solutions of these formulations are compared and discussed

    Numerical studies of the thermal design sensitivity calculation for a reaction-diffusion system with discontinuous derivatives

    Get PDF
    The aim of this study is to find a reliable numerical algorithm to calculate thermal design sensitivities of a transient problem with discontinuous derivatives. The thermal system of interest is a transient heat conduction problem related to the curing process of a composite laminate. A logical function which can smoothly approximate the discontinuity is introduced to modify the system equation. Two commonly used methods, the adjoint variable method and the direct differentiation method, are then applied to find the design derivatives of the modified system. The comparisons of numerical results obtained by these two methods demonstrate that the direct differentiation method is a better choice to be used in calculating thermal design sensitivity

    Solving the Strongly Coupled 2D Gravity: 2. Fractional-Spin Operators, and Topological Three-Point Functions

    Full text link
    Progress along the line of a previous article are reported. One main point is to include chiral operators with fractional quantum group spins (fourth or sixth of integers) which are needed to achieve modular invariance. We extend the study of the chiral bootstrap (recently completed by E. Cremmer, and the present authors) to the case of semi-infinite quantum-group representations which correspond to positive integral screening numbers. In particular, we prove the Bidenharn-Elliot and Racah identities for q-deformed 6-j symbols generalized to continuous spins. The decoupling of the family of physical chiral operators (with real conformal weights) at the special values C_{Liouville}= =7, 13, and 19, is shown to provide a full solution of Moore and Seiberg's equations, only involving operators with real conformal weights. Moreover, our study confirms the existence of the strongly coupled topological models. The three-point functions are shown to be given by a product of leg factors similar to the ones of the weakly coupled models. However, contrary to this latter case, the equality between the quantum group spins of the holomorphic and antiholomorphic components is not preserved by the local vertex operator. Thus the ``c=1'' barrier appears as connected with a deconfinement of chirality.Comment: 45 pages Latex file, 14 figures (uuencoded

    The Braiding of Chiral Vertex Operators with Continuous Spins in 2D Gravity

    Full text link
    Chiral vertex-operators are defined for continuous quantum-group spins JJ from free-field realizations of the Coulomb-gas type. It is shown that these generalized chiral vertex operators satisfy closed braiding relations on the unit circle, which are given by an extension in terms of orthogonal polynomials of the braiding matrix recently derived by Cremmer, Gervais and Roussel. This leads to a natural extension of the Liouville exponentials to continuous powers that remain local.Comment: (14 pages, Latex file) preprint LPTENS-93/1

    RPL Routing Protocol a case study: Precision agriculture

    Get PDF
    International audienceThe routing protocol for low power and lossy network (RPL) was designed in the ROLL working group at IETF since the year of 2008. Until the latest version of draft 19 released, this protocol algorithms and its four application scenario, such as home automation, industrial control, urban environment and building automation, have been nearly grounded. However, it is still very difficult to find effective approaches to simulate and evaluate RPL's behavior and other extensions of its application. In this paper, first we provide a brief presentation of the RPL protocol including two case studies ContikiRPL and TinyRPL, and an initial simulation experiment results obtained from the RPL capable COOJA simulator and its developed module. Second we then focus on the utilization of this protocol in the precision agriculture area and propose our dedicated instances hybrid network architecture to meet the specific requirement of this application. As a conclusion, we summarized our ongoing work and future solutions of the current technology issues

    A context-aware tool-set for routing-targeted mutual configuration and optimization of LLNs through bridging virtual and physical worlds

    Get PDF
    International audienceIn the history of the WSN, unexpected routing behaviors is always a main issue of the large scale WSN deployments. Considering the high cost of building a real deployment, network simulators are often used in this domain. However, the original problem is still not solved although the era of IoT has been coming. A new concept of LLN is emerging. We realize that, no matter how wonderful the results from the simulation scenarios and thorough testing, the problems, such as bad performance or even severe system failures due to suboptimal routing path, would still happen in the real-world system. Our context-aware tool-set can help to build the simulation topology which is more close to the real network through mapping a serial routing metrics defined by IEFT ROLL working group and the link situation of the actual network. We believe our suggestion of bridging virtual and physical worlds reflected on our proposed tool-set could conduct more precise routing-targeted simulations. Moreover, by close-loop method, the knowledge and analyzed simulation results can lead us to improve the routing topology of the deployed LLN

    A RPL based adaptive and scalable data-collection protocol module for NS-3 simulation platform

    Get PDF
    International audienceThis paper presents data-collection protocol framework based on RPL (IPv6 Routing Protocol for Low Power and Lossy Networks) for NS-3 (Network Simulator 3) simulation platform. Its design, implementation, simple examples of operations and evaluations will also be demonstrated. The conclusions and future developments are located in the final part of this paper

    Low velocity impact modelling in laminate composite panels with discrete interface elements

    Get PDF
    A model enabling the detection of damages developing during a low velocity/low energy impact test on laminate composite panels has been elaborated. The ply model is composed of interface type elements to describe matrix cracks and volumic finite elements. This mesh device allows to respect the material orthotropy of the ply and accounts for the discontinuity experimentally observed. Afterwards delaminations are described with interfaces similar to the ones observed with matrix cracks and the coupling between these two damages are established. In the first step, simple stress criteria are used to drive these interface type elements in order to assess the relevance of model principle. Nevertheless, the well known problem of mesh sensitivity of these criteria prevents the use of this model for now as a predictive tool but rather as a qualitative tool. An experimental validation is carried out thanks to impact experimental tests performed by Aboissiere (2003) and a very good match has been found. However, this model could predictivelly be used and would allow to foresee an original method to detect delaminations during an experimental test. This modelling has been successfully tested experimentally and compared to a C-Scan ultrasonic investigation
    corecore