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INTRODUCTION

The research progress in the project "Optimal Cure_ Cycle Design for
Autoclave Processihg of Thick Composite Laminates: A Feasibility Study,"
during the period of January to October, may be reported separately in three

aspects; namely:

1. design sensitivity analysis for the chemical-kinetic reaction
during prepreg processing, while the temperature is considered
as a design variable,

2. finite element analysis for the thermal system of heat
conduction coupled with the chemical-kinetic reaction during
prepreg processing,

3. design sensitivity analysis for the thermal system of heat
conduction coupled with the chemical-kinetic reaction during
prepreg processing, while the temperature of cure cycle is
considered as a design variable.

The chemical-kinetic reaction of Hercules 3501 during autoclave
processing has been modelled and expressed in terms of an equation of degree

of cure:

. (K1 + K2 a) (1 - a) (B - a) x < 0.3

°‘={K3(1-a) > 0.3 (1)

where B is constant, and Ki» Ko and K3 are functions of temperature. Note
that the rate of cure presents discontinuity at « = 0.3. The design
sensitivity calculation of transient problems with discontinuous derivative is
theoretically difficult. In addition, it is numerically difficult to
precisely monitor the critical time at which the discontinuity occurs. The

research results in this regard have been documented in Appendix A. In a




summary, one first studied the effect of the accuracy of the critical time
evaluation on the accuracy of the thermal design sensitivity analysis. It
showed that the design sensitivity calculated by the adjoint variable
technique is not sensitive to the accuracy of the critical time evaluation.
Next, the adjoint variable technique was employed to find the thermal design
sensitivity numerically. Two approaches were developed. One maintains the
jump condition. The other uses a logic function to smoothly approximate the
discontinuity within a smalll region. Both approaches showed good results.
Nevertheless, the latter one is to be used for further study. The reason is
that the a 1is a function of time as well as position; therefore, it is
numerically difficult to keep track of the a discontinuity at every spatial

position.

The second stage of research is devoted to the computer code development
for the simulation of a heat conduction model coupled with a chemical-kinetic
model during prepreg processing. The equation for the chemical-kinetic model

is already given in equation 1. In addition, the heat condction equation is

given as
2 .
pc%%=k—-zaT+pHRa (2)
2z

where p is the mass density, ¢ is the coefficient of heat capacity, k is the

heat conduction coefficient, and Hy is the heat generated by cured resin.

The finite element discretization is introduced to convert the initial-
boundary value equations (1) and (2) into a set of first order differential
equations. This set of equations are then solved simu1taneous]9 by a
numerical integration code called DE. To preserve analysis accuracy, the
temperature and the degree of cure are subjected to the same numerical error

control during the numerical integration.




Two numerical example have been performed. One simulates the autoclave
processing of 192 ply prepregs with 32% Hercules resin content. The resin
flow can be neglected in this example, because the resin content is low. To
focus on the heat conduction and the chemical-kinetic models, the measured
temperature on the surfaces of the composite laminate are used as boundary
temperature, instead of the temperature of cure cycle. Although the heat
flux, induced by the heat convection of autoclave air temperature, is
neglected, the numerical result is in an excellent agreement with Loo's data,
as shown in figure 1. The long CDC computer time (17,056 CPU seconds) is
required to to analyze a complete cycle of autoclave processing. This may be
because the autoclave processing needs a long real time (275 minutes) to
perform. In addition, the numerical integration requires small time step size

becuase the system equations are quite "stiff".

The second example is taken from the results of compression modelling of
composite laminates [1]. The research was done in General Motor Research

Center. The degree of cure of resin in term of temperature is given as
o _ D
&= (K + K M (1 - a) (3)

where m and n are constants, and K; and K, are functions of temperature. Note
that neither «a discontinuity nor resin flow are needed to be considered in
this example. The developed computer code can be used to solve equations 2
and 3 without difficulties. The results calculated are close to those

published, as shown in figures 2 and 3.

In the third stage, one concentrates on the derivation of the thermal
design sensitivities of temperature uniformity related to the change of
surface temperature. Note that the temperature on the surface of prepreg is

called the surface temperature which is controlable and is considered as a




design variable. Moreover, the goal of the optimal design is to achieve a
uniform temperature distribution across the thickness of the laminates. The
performance index of the temperature uniformity, ¢, may be defined as the
least square of the deviation between the pointwise temperature and the

average temperature as:

t
o=J) UM T2dz- (N1 an¥/n] (4)
[o]

where T 1is the temperature distribution and h is the thickness of the

Taminate.

Two methods have been developed to analyze the thermal design
sensitivity. One is the adjoint variable method. The other is the approach

of direct differentiation.

Using the adjoint method, the design derivative of the temperature

uniformity is derived as
do_ . jtf I (-u o of Hod =e=) dz dt (5)
aTc to 0 PR 5|

where f is the right side of equation 3 and the adjoint variable A and u are

solved by the following equations:

2
. %A of of _ 2 (h
pCcA = k ;;2- U-6T [0 HR)\.ET -ﬁf Tdz
i=ugt e WA

with homogeneous boundary conditions and terminal conditions defined at t =
tg. The above equations are coupled linear equations which can be solved by

the same computer code developed for the thermal analysis discussed




previously.

Using the direct differentiation, equation 4 can be taken for derivatives
with design variable, T., directly as
4 ., ftf Pr7dz-Mrdze M1 dz/m] at (6)
HT; t, ‘o o 0
where T' = dT/dTc can be obtained by taking the derivatives of equations 2

and 3 as

) 2
oT T’ .,
pc = k + p H, «
ot 622 R
and

*y of ' df ]
with homogeneous boundary and initial conditions. Again, the f in the above
equations denotes the right side of equation 3 and «a' = da/ch. The
perturbation of the performance index, A¢, due to the change of the design

variable, ATC, can be approximated by the design derivative, d¢/dTC, i.e.,

A¢:g-‘§-’-- AT, (7)
[of

where the actual change A¢ can be obtained by the finite difference scheme,

i.e.,
Ay = ¢(Tc + ATC) - ¢ (Tc) (8)

The combination of the preceding two equations provides a good mean to check
the accuracy of the thermal design sensitivity. As listed in Table 1, the
actual changes are calculated for various perturbation of design variable,
ATC, based on equation 8; and the last two columns indicated the change of
¢ predicted by methods presented in equations 5 and 6. Using the

compression molding of a polyester [1] as an example, it is noted that the




direct differentiation method is superior to the adjoint method in this study.
The direct differentiation method provides a better evaluation of the actual
change of the performance index. Besides, fhe approach of direct
differentiation provides the time histories of design derivatives d¢/ch,

dT/dTc and da/ch, as shown in figures 4 to 6, respectively. It is of
great interest to observe that the change of the controi temperature has
significant effect on the temperature uniformity only when the operational
time of processing is over 100 seconds. The figures dT/dT. and da/ch

confirm this observation.

Conclusions

Two goals listed in the proposal have been achieved, namely, the thermal
analysis and the calculation of thermal sensitivity. A finite element program
for the thermal analysis and design derivatives calculation for temperature
distribution and the degree of cure has been developed and verified. It is
found that the direct differentiation is the best approach for the thermal
design sensitivity analysis. In addition, the approach of the direct
differentiation provides time histories of design derivatives which are of
great value to the cure cycle designers. The approach of direct differentia-

tion is to be used for further study, i.e., the optimal cycle design.

Reference

1. Barone, M. E. and Caulk, D. A., "The Effect of Deformation and Thermoset
Cure on Heat Conduction in a Chopped-Fiber Reinforced Polyester During
Compression Molding," Int. J. Heat Mass Transfer, Vol. 22, pp. 1021-1032,
1979, :




Compression Molding

Table 1 Thermal Design Sensitivity Analysis for

Mold Temp. Cost Function Actual Change ¢'AT ¢'AT
423°K 21019.648 = ==m== mmeee eeeee
422°K 20501.695 517.95 341.97 501.051
418°K 18157.462 2862.186 1720.32 2505.257
413°K 16137.194 4882.45 3445,93 5010.514
408°K 14772.308 6247.34 5160.96 7515.771
403°K 13479.446 7540.20 6881.28 10021.028
393°K 11083.596 9936.05 10321.92 15031.542
428°K 23238.107 2218.46 1720.32 2505.251
433°K 25042,554 4022.90 3440.64 5010.514

*Calcu1ated by the adjoint variable method

**Calculated by the direct differentiation
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APPENDIX A

NUMERICAL STUDIES ON THE DESIGN SENSITIVITY CALCULATION
OF TRANSIENT PROBLEMS WITH DISCONTINUOUS DERIVATIVES
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SUMMARY

The aim of this study is to find a reliable numerical algorithm to
calculate design sensititivty of transient problem with discontinous
derivatives. The finite difference method and the adjoint variable technique
using both Simpson's rule and DE program, a predicator - corrector algorithm,
are investigated. It is shown that the design sensitivity calculated by the
finite difference method 1is quite sensitive to the numerical errors.
Nevertheless, the design sensitivity calculated by the adjoint variable
technque is relatively stable against various numerical integrations and time
steps. It is concluded that the adjoint variable technique in conjunction
with the DE program with appropriate truncation error control provides very

satisfactory numerical results.

I. INTRODUCTION

The derivative of the thermal response with respect to the design
variable 1is USually called thermal design derivative or sensitivity. The
information of design derivative is not only very useful for the trade-off

design but it is also required for the iterative design optimization.

The calculation of design derivatives in thermal problems has attracted
research interest in such areas as design of space structure subject to

temperature constraints [1], and chemical process control [2].

For the problems of interest, the state equation is usually expressed as
z=f (b, z, t), o<t< T (1)
with initial condition

z (b, 0) =2 (2)
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where a dot denotes differentiation with time, t, b is the design variables
and z, is prescribed initial condition. The state function z(b, t) is a
function of time and design variable. Although the design variable b is
generally a function of time, in the following discussion, it is listed as a

constant parameter for simplicity.

Four different methods [1]; the Green's function, finite difference,
direct differentiation,and adjoint variable technique, are currently used in
the calculation of thermal design sensitivity, i.e., dz/db. Haftka [1, 3]
indicated that the numerical integration scheme (explicit or implicit) used to
solve Eq. 1 is an important factor in detemining the computational efficiency
and accuracy of thermal design sensitivity for the problem with continuous

derivative z.

On the other hand it 1is not wuncommon 1in engineering applications
that z or the function f(b, z, t) defined in Eq. 1 exhibits discontinuities.
The critical time at which the discontinuity happens is usually monitored by
the state variable z. Engineering examples can be found in the multi-stage
control problem [4], control of chemical kinetics [5], and the mechanical
system with intermittent motion [6, 7]. The intermittent motion is
characterized by the occurence of nearly discontinuous force and velocity
caused by impulsive force, impact, mass capture, and mass release. The
optimal design problems of mechanisms with intermittent motion have been
discussed by Huang, Huag and Andrews [6]. Their method is based on the
identification of critical times at which discontinuities in forces or
velocities occur. Jump conditions of those discontinuities are employed in an
adjoint variable approach for the calculation of design sensitivity
coefficients. Ehle and Haug [7] introduced the "logical function" to smoothly

approximate discontinuities. An example in their work shows that time step and
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the size of transient 2zone used for discontinuity approximation have

significant effect on the accuracy of design sensitivity calculation.

It is the objective of this study to investigate the numerical accuracy
of design sensitivity calculation, focused on the numerical integration

schemes and the approximation of of critical time.

II. Design Sensitivity Analysis

A functional is given as
T
o= [ glz(t), b, t) dt (3)
)
where T is the terminal time which is assumed to be independent of the design
variable b. The state variable z(t) is governed by the state equations as

follows:

fl (z(t), b, t) ; when z(t) < ¢

z=f= f2 (z(t), b, t) ; when z(t) » ¢ (4)

with initial condition
z(o) = z, (5)

The constant ¢ of jump condition in Eq. 4 is assumed again to be independent
on design variable. It is obvious that the state variable z(t) and the
critical time t at which z(t) = ¢ depend on the design variable b because z(t)
is the solution of Eq. 4. In other words, z and t can be defined as z(t, b)
and t(b), respectively. The problem of interest is to determine the design
sensitivity of functional ¢. The variation of functional ¢ with respect to

the design variable is defined as
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2 ¢(t,b+edd) - ¢(t, b)
€0 €

_ d¢(t,b+ebb)
= < e=o (6)

8¢

¢' &b

where &b is the perturbation of design variable and ¢' is defined as
d¢/db. The variation of state function, &z, can be defined by a similar

fashion.

According to the definition of variation and Leibnitz's rule, the

variation of functional is derived as

_,) 6t (7)

Note that, ©because of the dependence of b, 52 = (dz/db)é&b anq
5t = (dt/db)éb. The last term of above equation can be dropped provided
that the continuity assumption of g at t is maintained. The variations,
62 and &t can be determined by using the equality of Eq. 4 and the jump
condition z(t) = c. However, by careful selection of the adjoint equation,
it is not necessary to obtain explicit expressions for 6z and 8t in order to

obtain the variation &¢,

In accordance with the equality of Eq. 4, it is evident that

T [ )
[ Az-f) dt
0

0

fg-x(i-fl) dt + f{+ M (2-F,) dt (8)

for an arbitrary function A(t) and the design variable b. The variation of

the preceding functional yields:
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0= [T enz-f)) dt + j; oh (3-F,) dt

+IO X(éZ'Wéb‘Bz—éz) dt+IE+)\(62‘W5b'FZ—62) dt

t+

+A(z - fl),E_ 8% - Az - fz)'_ 5t (9)

Note that the summation of first two terms should be zero because the
equality of Eq. 8 is also true for an arbitrary O6A, Furthermore, it is
understood that the critical time t depends on design variable implicitly
through the relation z(t, b) =c. Thus, employing the Leibnitz's'rule, the
variation 6t appears in the derivation. However, these two boundary terms may
be dropped out because z - fl and z - f2 are equal to zero when the time t
approaches to t and t', respectively, according to Eq. 4. After
simplification and integration by parts, the preceding equation can be

rewritten as

ra . of
fo (82 - o2

1 bfl bfz of

2
éb - 53

82) dt+jf+x(<si-.5b_5b - 5 62) dt
t

o
]

T, 0. bfl bfl < . afz
fo [(-X = 537) 62 = A 5= 6b] dt + IE‘“ [(-X - 537) 82

t

+
o A 8z

6f2 T

- A g5 8b] dt + A6z (10) -

E+

Note that the operators "8" and "+" are exchangable provided that z is a

continuous function of b and t in the time domains O0< t< t  and

T at«<n. The initial condition z(b,0) = z, is assumed to be independent

on the design variable. Consequently, 6z = 0 at t = 0. As to the total
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variation of the jump condition z(b,t) =c, it is derived as 28t + 6z = 0
or 6z = -38% for t approaches to either t or t'. The boundary terms in

Eq. 10 can then be rearranged as

i T
A6z + Aoz
-+
0 t
= - Az[_8T + Az|_, 8T + A8z
t t T

[-()‘fl)'i- + (kfz),?_] 5t + Az

T

Adding Eqs. 7 and 10 up, one has the variation of the functional ¢ as

- af of

s = [T (A - 1 F)zszdt»ff‘ (K - 52 + 29) &z dt
t
== of o,
st (%%"‘sb'l‘)ébdt*f -\-55—)6bdt
+)‘62|1:
+[()\f2-g)'{+- (Kfl-g)li_] 5t (11)

Since A still retains its arbitrariness, the only unknowns in the last
formulation are 6z and 6%. One may now specify the variable A in such a way
that all of terms associated with 6z and 6t are dropped. Defining the

following adjoiﬁt equations:

f
s 1 dg <
M= tase 0<t<t (12)
° f2 g -
Az = -5t t<t<t (13)

with terminal conditions:




A, (1) =0 (14)
and

M) = [0 f, - gli" + g’%_]/f1 for f, () # 0 (15)
Finally, the combination of Eqs. 11-15 provides a simple formula for S¢,

T of of,
f (BB-KZEF)det+f ,55 M, ) &b dt (16)

If the design variable is a parameter instead of a function, the general

expression of Eq. 16 can be simplified to yield the design sensitivity,

of of
- (t (dg _ 1 LT 2
B lo G rhim) st L g N dt

Example 1 The state equation is given as

b2 ¢2, 0 < z < 1440

z = {4 , 1440 < z

with initial condition z(b,0) =

Given the functional ¢ as
- (T ,2
4’1 = IO z dt’

the derivative d¢/db is simply obtained as

d¢1

e = ft 2, bt2

dt+f Ap dt,

where the adjoint variables xl and xz are determined by the adjoint equations
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xl = - 2z, 0<tcet
{Xz = - 22, tT<t<
with terminal conditions,
{xz(f) =0 ) ) )
kl(t) = kz(t)/(bt). at t =t

If the design variable and the total time interval are assigned as b =
400 and © = 2, it follows that the critical time t is exactly equal
to t = 0.3 for jump condition z(t) = 1440 and the design sensitivity is
obtained as d¢/db = 5598.3. The_state variable and adjoint variable can be
solved analytically. They are plotted in Fig. 1. The jumps of z and A are

indicated.

Example 2 A model of chemical kinetics is investigated here. The relation
between the degree of cure a and the reaction or cure rate a during the curing

process of Graphite/Epoxy composite is determined experimentally as [5],

f (a’ T) t) = (K +K a) (l‘a) (B'd), 0 < a< 0.3
= {4 1.2 (17)
fz(a’ T: t) K3(l‘a) > 0.3 L /

.
a

with initial condition «(0)

0 and the following definitions

K, = 8A) Exp (-4E,/RT)
K2 = AA2 Exp ('AEZ/RT)
K3 = AA Exp (-AE3/RT)

where AAl, AAZ’ AA3,

is °K temperature. The problem is to analyze the sensitivity of a functional

AEl’ AEZ’ AE3, R and B are material constants [5],and T

of a with respect to the temperature, i.e., d¢/dT where ¢ is defined as
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4’2 = f; a2 dt

The adjoint equation is derived as

K] =20 ¢ &) (K + KB - KB+ 2KBa+ Ka = 2Kja = Kyad),
0<t<t
xz = 2a - K3 29 t<t< T (18)
with terminal conditions,
A () =0 ) ,att =T,
A (D) = -kzét) % - i

2 2 -
Kla -KIB+K2<1 +BK2a -2K2a , att=1¢t.

In addition, the variation of functional ¢2, d¢2/dT, is given as

d¢ - of of

2 t
il P

1 T 2
S'f—) dt + IE (- )\2 gf—) dt (19)

It is not easy to solve Eqs. 17 and 18 analytically. Instead, they are
solved numerically in the next section. And d¢2/dT in Eq. 19 is evaluated by
a2 numerical integration method.

As mentioned earlier, the discontinuous derivative can be replaced by a

logical function L(z,e) which smoothly approximates a Heaviside step function

H,

1 Z»0
0 2<0
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within a given region o<z<e for a small number € . The Tlogical func-

tion L(z,c) is defined as {7]:

2n+1 2n+l
LINRE:

Liz,e) =-§ . (20)

2n+1 2n+1 2n+1
|z| |7 -

1
+ 5 [z-e (z-e)" 7]

where n 1is an integer selected so as to ensure the continuity of the
derivative up to order d, i.e., 2n+l >d. The n is taken as 1 in this
study. Note that the values of logical function L(z,e) are 0, Ué and 1 for
2=0,¢/2 and €., respectively. The differential equation, equation "4, can be

combined into a single function by using the logical function L(z,e) as
z=f [1-L (z=c,e)] + f, L(z=c,e) .

Since L is a smooth function, there 1is no discontinuity in the z of the
preceding equation. Thus, the formulation of the design sensitivity analysis

can be simplified a great deal.

The design derivative of function by defined in the example 2, can be

easily obtained by using the standard adjoint variable technique:

d¢ of of
2 - Lo - 2] at (21)
a1 o T aT

where the adjoint variable A satifies the following adjoint equation:

o 2fy aL . f2 aL
>\+[,&.x_(1-L)-f1ﬁ+.&-L+f2~ﬁ]>\+2a=0 (22) |
|
|
with terminal condition
A=) =0, \

With the definition of L(a-0.3,g) Eq, 20, the derivative d3L/2a is not
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difficult to calculate.

Although using a logical function to smooth the derivative discontinuity,
one may avoid the need to identify the critical time of jump condition, yet
the selection of € , the domain where the logical function is defined,
introduces a new difficulty. The numerical results listed in Table 4.b are
obtained by integrating Eqs. 20 - 22. To obtain these results, the report

time step required in DE program is given as AT=0.05 .
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III. Numerical Considerations

The calculation of the design sensitivity of thermal system with
discontinous derivatives encounters in numerical difficulties as expected.
Numerical errors arise not only in solving the state equation but also in

identifying the critical time of jump condition.

There are two numerical integration schemes employed here to solve the
state and adjoint equations discussed in the preceding section. One is the
Simpson's method, the other is DE program [8] using the Adams family of

formulas.

Since the truncation error of Simpson's method is proportional to the
fourth order derivative of unknown function, it provides exact integration for

solving equation in the first example.

The DE program is one of predictor-corrector integration algorithm using
Adams family of formulas. The truncation error is controlled by varying both
the step size and the order of the method. The truncation error at time step

th+1 is required to satisfy
[trunc| < ABSERR + RELERR * |z |

where the z, is the solution of differential equation at t, and the values

ABSERR and RELERR are supplied by the user. The DE program is quite easy to

~be used and has capability to manage moderate stiff equation which happens

commonly in the problem of chemical kinetics.

The critical time t at which the Jjump condition occurs is determined by
selecting the time grid point closest to the condition 2z(t) = c for a given
constant ¢ and state variable z. Thus, the accuracy of t strongly depends on

the step size.
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The cost function and design derivative obtained by the adjoint variable
technique of the first example are examined first. The comparisons between
different numerical integrations used to solve equations, as well as time step
and bounds of errors are listed in Table 1. It is indicated that all of them
provide satisfactory results. Since b is taken as 400 in this calculation,

t is exactly 0.3. Therefore, there is no approximation error at all on the
critical time t . Note that when the DE program is used for solving the
state and adjoint equations, the cost function ¢(t) = f; a2 dt is solved by an

2

additional differential equation ¢ = af .

To investigate possible sources of errors in the numerical calculations
of thermal design derivatives, the change of cost functional with respect to
different perturbation size of design variables are listed in Table 2. The
design derivatives, ¢', 1in Table 2 are obtained by using the finite
difference method and adjoint variable techniques with different numerical
integration algorithms. It shows that the finite difference method, the
adjoint variable techniques with Simpson's rule and with DE program
introducing error bounds less than 10E-4 exhibit quite a deviation against the
exact calculation. The major source of error might be the miscalculation

of t in the analysis.

As an example, when b is reduced to 399.9 (0.025% change) the difference
between cost functions evaluated exactly, 5293504.6, and evaluated by the
Simpson's rule, 6194664.7, soars up to 901160 (17%). This big discrepency
results from the numerical prediction of critical time t which should be 0.299
analytically instead of 0.3 numerically. Although the error of t is small, it
happens in a neighborhood of steep z which causes significant error of z.

Moreover, this error is squared and accumulated through t = 0.3 to t = 2.0.
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It has been shown in Table 2 that the accuracy of the design sensitivity
calculated by the adjoint variable technique is less sensitive to different
numerical integration schemes than the accuracy of the cost functional
evaluation does. To see the effect of the miscalculation of t on the accuracy
of the design sensitivity calculated by the adjoint variable technique,
various t's, which is supposed to be 0.3 analytically, are used for the design
sensitivity calculation. The results are listed in Table 3. It is clearly
shown that the adjoint variable approach is quite insensitive, compared to the
finite difference methoq, to the numerical errors arising in the analysis and

in the estimation of t at the jump conditions.

In example 2, neither state variable z nor critical time t has analytical
solution. The design sensitivities listed in Table 4.a are calculated by the
finite difference method and the adjoint variable technique with DE program,
It is again shown that the adjoint variable technique provides a more stable
solution than the finite difference method does, against numerical errors.
The jumps of state variable and adjoint variable for example 2 are indicated

clearly in Fig. 2.

Furthermore, the numerical results listed in Table 4.b are obtained by
using the logic function approximation and by integrating Egs. 20-22. The

accuracy of the approach is also quite satisfactory.

IV. Conclusions and Remarks

The calculation of design sensitivity is discussed for the thermal
transient problem with discontinuous derivative. The numerical difficulties
depend on the approximation error of integration and the evaluation of the

critical time of jump condition.

Because of the simplicity, it is a very common practice in the optimal




29

design community that the finite difference approach is used as a standard
reference to check the accuracy of design sensitivity calculations. However,
it is revealed in this investigation that the finite difference method may
provide very unreliable information of design sensitivity. On the other hand,
the adjoint variable technique using numerical integration algorithm with
varied step size and error control performs satisfactorily in the design
sensitivity analysis. Finally, it is also suggested in this investigation
that the design sensitivity analysis can be used as an accuracy indicator for

analyzing the transient problems with discontinuous derivatives.
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Table A2. Perturbation of Cost Function

(a) Exact Integration based on the given critical time t

&b ¢ Ag* ¢’ Sb** t
0.1 5294641. 568.2 604.1 0.3
1 5299760. 5687.2 6041.7 0.3
4 5316879.7 22807. 24166.8 0.3
10 5351383.7 57311. 60417. 0.3
20 5409692. 115619.2 120834. 0.3
40 5530494.8 236422.1 241668. 0.29
-0.1 5293504.6 -568.1 ~604.1 0.3
-1 5283205.2 -10867.5 -6041.7 0.31
-4 5265617.6 ~-28455.0 -24166.8 0.31
-10 5230743.3 -63329.4 -60417. 0.31
=20 5168474.0 -125598.6 -120834. 0.32
-40 5047690.4 -246382.3 -241668. 0.33

by the finite difference method

** by using the adjoint variable technique
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