39 research outputs found

    Performance and Recovery of Well-Trained Younger and Older Athletes during Different HIIT Protocols

    Get PDF
    Due to physiological and morphological differences, younger and older athletes may recover differently from training loads. High-intensity interval training (HIIT) protocols are useful for studying the progression of recovery. It was the objective of this study to determine age differences in performance and recovery following different HIIT protocols. Methods: 12 younger (24.5 ± 3.7 years) and 12 older (47.3 ± 8.6 years) well-trained cyclists and triathletes took part in this study. Between the age groups there were no significant differences in relative peak power to fat-free mass, maximal heart rate (HR), training volume, and VO2max-percentiles (%). Participants performed different HIIT protocols consisting of 4 × 30 s Wingate tests with different active rest intervals (1, 3, or 10 min). Peak and average power, lactate, HR, respiratory exchange ratio (RER), subjective rating of perceived exertion (RPE), and recovery (Total Quality Recovery scale, TQR) were assessed. Results: During the different HIIT protocols, metabolic, cardiovascular, and subjective recovery were similar between the two groups. No significant differences were found in average lactate concentration, peak and average power, fatigue (%), %HRmax, RER, RPE, and TQR values between the groups (p > 0.05). Conclusion: The findings of this study indicate that recovery following HIIT does not differ between the two age groups. Furthermore, older and younger participants displayed similar lactate kinetics after the intermittent exercise protocols

    CHANGES IN FOOT PRESSURE DISTRIBUTION DURING A COMBINED RUNNING AND CYCLING TEST

    Get PDF
    Introduction: Very often the great training demands in running lead to an overload of the musculo-skeletal system. Alternative training methods like cycling would be very useful to reduce this overload. In this connection the question arises of how these triathlon-specific combined exercises affect running economy and foot pressure distribution (FPD). Methods: 24 national and international elite triathletes (7 female, V02max 64,3 ml kg-1 min-1, 17 male, V02max 71,2 ml kg-1 min-1) performed a combined runningcycling test in the laboratory. The combined test design consists of three running step tests with two different speed levels (R1, R3, R4). Between R1 and R3 a 20 min endurance exercise test in running, and between R3 and R4 a 30 min endurance exercise test in cycling were each performed with an intensity of 80% V02max. Foot pressure distribution (Novel, Pedar-System), surface electromyography (Biovision), lactate and heart rate were measured in running and cycling. For determination of the pedar masks, the soles of the feet were divided into 9 anatomical masks (Bontranger et al., 1997). Results: The results showed that there were no significant changes in contact area, maximum vertical forces, vertical displacement, contact time between R1 and R3. In contrast to that, after the cycling exercise significant increases were shown between R1 and R4 in maximum vertical forces (v1: +15%, v2: +12 %) and vertical displacement (v1: +9%). Primarily, the changes result from the middle part of the metatarsus. Conclusion: Athletes should be careful when practicing running immediately after cycling in order to reduce vertical stresses. References: Bontranger, E.L., Boyd, L.A. et al. (1997). Determination of Novel Pedar Masks using Harris Mat Imprints. Gait & Posture 4, 167-168

    A Game-Based Approach to Lower Blood Pressure? Comparing Acute Hemodynamic Responses to Endurance Exercise and Exergaming: A Randomized Crossover Trial

    Get PDF
    The present randomized crossover study aimed to determine whether an exergaming session in an innovative, functional fitness game could be an effective exercise approach that elicits favorable blood pressure (BP) responses, such as a typical moderate endurance exercise (ET). Therefore, acute hemodynamic responses after a training session in the ExerCube and an ET on a treadmill were assessed and compared. Twenty-eight healthy recreational active participants (13 women; aged 24.8 ± 3.9 years) completed an exergaming session (EX) and an ET in a randomized and counterbalanced order. Before and throughout the 45 min after the training, the peripheral and central BP were measured. After the ET, there was a moderate decrease in both peripheral systolic (−1.8 mmHg; p = 0.14) and diastolic (−0.8 mmHg; p = 0.003), as well as central diastolic (−1.5 mmHg; p = 0.006) pressure compared to the resting value before the exercise. After the EX, there was a significant decrease in peripheral systolic (−6.3 mmHg; p < 0.001) and diastolic (−4.8 mmHg; p < 0.001), as well as central systolic (−5.8 mmHg; p < 0.001) and diastolic (−5.3 mmHg; p < 0.001) pressure compared to baseline. The interaction effects showed significant differences in peripheral and central systolic BP as well as in peripheral diastolic BP (p = 0.05). The EX seems to be an effective training approach that triggers relevant peripheral and central BP-responses, which are more pronounced than after a typical ET. Therefore, the ExerCube can be a time-efficient training tool to improve cardiovascular health

    Gaming Instead of Training? Exergaming Induces High-Intensity Exercise Stimulus and Reduces Cardiovascular Reactivity to Cold Pressor Test

    Get PDF
    Introduction: The present study assessed if an exercise session in an innovative exergame can modulate hemodynamic reactivity to a cold pressor test (CPT) to a similar extent as a typical moderate endurance training (ET). Furthermore, cardiorespiratory, and affective responses of an exergame session and an ET were compared. Methods: Twenty-seven healthy participants aged 25 ± 4 years (48% female; BMI 23.0 ± 2.1 kg/m2) participated in this cross-sectional study. All participants completed both an ET on a treadmill and training in the ExerCube (ECT). HR and oxygen consumption were recorded during both training sessions. Before and after both exercise sessions, the hemodynamic reactivity to a CPT was determined. Results: During ECT, HR, oxygen consumption, energy expenditure, and the metabolic equivalent of the task were significantly higher than those obtained during ET (p < 0.001). With regard to the CPT, the participants showed significantly lower responses in peripheral systolic (p = 0.004) and diastolic blood pressure (p = 0.009) as well as central systolic (p = 0.002) and diastolic BP (P = 0.01) after ECT compared to ET. The same was true for pulse wave velocity (p = 0.039). Conclusion: The ECT induced a significantly higher exercise stimulus compared to the ET. At the same time, it attenuated hemodynamic stress reactivity. The ECT presents a relevant training stimulus that modulates cardiovascular reactivity to stress, which has been proven as a predictor for the development of hypertension. Trial Registration: ISRCTN registry, ISRCTN43067716, 14 April 2020, Trial number: 38154

    The Influence of Recovery and Training Phases on Body Composition, Peripheral Vascular Function and Immune System of Professional Soccer Players

    Get PDF
    Professional soccer players have a lengthy playing season, throughout which high levels of physical stress are maintained. The following recuperation period, before starting the next pre-season training phase, is generally considered short but sufficient to allow a decrease in these stress levels and therefore a reduction in the propensity for injury or musculoskeletal tissue damage. We hypothesised that these physical extremes influence the body composition, blood flow, and endothelial/immune function, but that the recuperation may be insufficient to allow a reduction of tissue stress damage. Ten professional football players were examined at the end of the playing season, at the end of the season intermission, and after the next pre-season endurance training. Peripheral blood flow and body composition were assessed using venous occlusion plethysmography and DEXA scanning respectively. In addition, selected inflammatory and immune parameters were analysed from blood samples. Following the recuperation period a significant decrease of lean body mass from 74.4±4.2 kg to 72.2±3.9 kg was observed, but an increase of fat mass from 10.3±5.6 kg to 11.1±5.4 kg, almost completely reversed the changes seen in the pre-season training phase. Remarkably, both resting and post-ischemic blood flow (7.3±3.4 and 26.0±6.3 ml/100 ml/min) respectively, were strongly reduced during the playing and training stress phases, but both parameters increased to normal levels (9.0±2.7 and 33.9±7.6 ml/100 ml/min) during the season intermission. Recovery was also characterized by rising levels of serum creatinine, granulocytes count, total IL-8, serum nitrate, ferritin, and bilirubin. These data suggest a compensated hypo-perfusion of muscle during the playing season, followed by an intramuscular ischemia/reperfusion syndrome during the recovery phase that is associated with muscle protein turnover and inflammatory endothelial reaction, as demonstrated by iNOS and HO-1 activation, as well as IL-8 release. The data provided from this study suggest that the immune system is not able to function fully during periods of high physical stress. The implications of this study are that recuperation should be carefully monitored in athletes who undergo intensive training over extended periods, but that these parameters may also prove useful for determining an individual's risk of tissue stress and possibly their susceptibility to progressive tissue damage or injury

    Commentaries on viewpoint : physiology and fast marathons

    Get PDF
    Q2Q1N/

    Acute Effects of Self-myofascial Release using a Foam Roller on Arterial Stiffness in Healthy Young Adults

    Get PDF
    This study aimed to investigate whether a single bout of Self-myofascial Release (SMR) has a beneficial effect on peripheral and central Blood Pressure (BP) and different parameters of arterial stiffness. Twenty nine healthy male recreational athletes (26.1 ± 2.9 years, BMI 23.4 ± 1.5 kg/m2) completed an instructed SMR using a foam roller. Peripheral and central BP and different parameters of arterial stiffness were measured noninvasively before SMR and at different time points (t1, t15, t30) during a subsequent 30-min recovery phase. There was a significant decrease in both systolic (t15, −2.36 ± 4.45 mmHg, p = 0.05; t30, −4.01 ± 4.47 mmHg, p = 0.003) and diastolic (t30, −2.45 ± 5.45 mmHg, p = 0.025) peripheral pressure during the recovery phase after SMR. Regarding central BP, only systolic pressure showed a significant decrease (t30, −3.64 ± 5.83 mmHg, p = 0.003). Mean arterial pressure (t15, −1.91 ± 3.36, p = 0.03; t30, −3.05 ± 2.88 mmHg, p < 0.001), augmentation pressure (t30, −1.60 ± 2.40 mmHg, p = 0.009), peripheral resistance (t30, −0.09 ± 0.10 s* mmHg/ml, p < 0.001), and stiffness index β0 (t30, −0.33 ± 0.55, p = 0.021) were significantly reduced after SMR. No significant changes were determined for reflection coefficient, augmentation index, cardiac output, and heart rate, respectively. SMR showed effects on peripheral and central BP and different parameters of arterial stiffness in healthy young adults

    Die Differenz von Bildung und Erziehung - Ansatzpunkte empirischer Forschung aus Sicht der Sportpädagogik

    No full text
    Gröben B. Die Differenz von Bildung und Erziehung - Ansatzpunkte empirischer Forschung aus Sicht der Sportpädagogik. In: Hottenrott K, ed. Kreativität - Innovation - Leistung. Hamburg: Feldhaus; 2011: 148

    Optimizing sprint interval exercise for post-exercise hypotension: A randomized crossover trial

    No full text
    This study aimed to examine the effects of manipulating the rest intervals during sprint interval training (SIT) on post-exercise hypotension and within-session oxygen consumption. Thirty healthy, trained adults (aged 30.9 ± 8.7 years; 14 males, 16 females; BMI 22.1 ± 2.3 kg/m2; VO2max 50.7 ± 7.8 ml/kg/min) completed two different SIT protocols (4x 30-seconds all-out cycling sprints) with a one-week washout period. Sprint bouts were separated by either 1 (R1) or 3 (R3) minutes of active recovery. Both before and throughout the 45 min after the training, peripheral systolic (pSBP) and diastolic (pDBP) blood pressure, central systolic (cSBP) and diastolic (cDBP) blood pressure, aortic pulse wave velocity (aPWV), stroke volume (SV), and heart rate (HR) were assessed. Throughout the SIT protocols, oxygen consumption (VO2) was monitored. There were no significant differences in time spent at 75%, 85%, 95%, and 100% of maximal VO2 between R1 and R3. After R3, there was a significant reduction in pSBP, pDBP, cSBP, cDBP, and aPWV. After R1, there were no changes in the respective parameters. There were significant interaction effects in pSBD (p < 0.001), pDBP (p < 0.001), cSBP (p < 0.001), cDBP (p = 0.001), and aPWV (p = 0.033). HR significantly increased after both conditions. Only R1 resulted in a significant reduction in SV. Longer resting intervals during SIT bouts seem to result in more substantial post-exercise hypotension effects. Time spent at a high percentage of maximal VO2 was not affected by rest interval manipulation
    corecore