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Abstract: The present randomized crossover study aimed to determine whether an exergaming
session in an innovative, functional fitness game could be an effective exercise approach that elicits
favorable blood pressure (BP) responses, such as a typical moderate endurance exercise (ET). There-
fore, acute hemodynamic responses after a training session in the ExerCube and an ET on a treadmill
were assessed and compared. Twenty-eight healthy recreational active participants (13 women; aged
24.8 ± 3.9 years) completed an exergaming session (EX) and an ET in a randomized and counterbal-
anced order. Before and throughout the 45 min after the training, the peripheral and central BP were
measured. After the ET, there was a moderate decrease in both peripheral systolic (−1.8 mmHg;
p = 0.14) and diastolic (−0.8 mmHg; p = 0.003), as well as central diastolic (−1.5 mmHg; p = 0.006)
pressure compared to the resting value before the exercise. After the EX, there was a significant
decrease in peripheral systolic (−6.3 mmHg; p < 0.001) and diastolic (−4.8 mmHg; p < 0.001), as well
as central systolic (−5.8 mmHg; p < 0.001) and diastolic (−5.3 mmHg; p < 0.001) pressure compared
to baseline. The interaction effects showed significant differences in peripheral and central systolic BP
as well as in peripheral diastolic BP (p = 0.05). The EX seems to be an effective training approach that
triggers relevant peripheral and central BP-responses, which are more pronounced than after a typical
ET. Therefore, the ExerCube can be a time-efficient training tool to improve cardiovascular health.

Keywords: exergaming; hemodynamics; peripheral blood pressure; central blood pressure; post-
exercise hypotension; moderate endurance training

1. Introduction

Hypertension, which is often caused by a lack of physical activity (PA), is a leading
cause of cardiovascular diseases, reduced quality of life, and premature death. It is es-
timated that 7.5 million deaths each year around the world are attributed to high blood
pressure [1].

Regular aerobic exercise, regarded as a key lifestyle intervention for both the treatment
and prevention of hypertension, has been proven to reduce both systolic (SBP) and diastolic
(DBP) blood pressure (BP) in various populations [2]. Apart from regular aerobic exercise,
an acute bout of exercise already leads to a temporary lowering of BP [3,4]. The immediate
reduction in BP after a single exercise session is termed as post-exercise hypotension (PEH).
It is expected that the summation of the BP reductions that occur during the immediate
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recovery periods is responsible for long-term BP reductions [5]. Hence, PEH helps pre-
dict the BP response to regular exercise and thus the effectiveness of BP-related exercise
training [3,4].

Although the positive cardiovascular effects of regular exercise are widely recog-
nized, more than a quarter of adults worldwide do not meet the PA recommendation of
≥150 min/week of moderate-intensity PA or ≥75 min/week of vigorous-intensity PA [6],
which puts them at higher risk for developing hypertension. Even though adults’ partic-
ipation in regular exercise is influenced by different personal, social, and environmental
factors, a lack of motivation is reported to be one of the most common barriers [7]. In this
context, exergames have developed as a promising approach to increase PA levels and
enable a joyful exercise experience.

Exergames are interactive video games that encourage an active gaming experience.
By combining electronic entertainment with physical exercise, exergames create novel
opportunities to expand PA in different age groups and settings. Due to their playful
and motivational nature, exergames may present an attractive alternative or addition to
traditional exercise modes [8].

Even though scholars have found an increase in energy expenditure when playing
exergames compared to resting and inactive (sedentary) videogames [9], most games only
induce low to moderate-intensity activities that are claimed to be too low to produce
relevant physical adaptations and health-related outcomes [10]. This may be due to the fact
that most exergames fail to feature both an attractive game design and an effective training
concept [11]. It is therefore questionable whether current exergames represent a suitable
and effective training approach for cardiovascular prevention.

Recently, a new functional fitness game setting called ExerCube came on the market.
The ExerCube promises an individually tailored fitness game that combines innovative
and motivating software and hardware design with a holistic training concept [12,13].

The present study aimed to determine whether the ExerCube is an effective training
approach that triggers relevant BP responses, such as conventional endurance exercise.
Therefore, the acute hemodynamic responses of a single exergaming session (EX) in the
ExerCube were compared with PEH effects after a moderate endurance training (ET) on a
treadmill. In addition to peripheral BP, central BP was also assessed as it has a significantly
higher predictive value with regard to future cardiovascular morbidity and mortality [14].

We hypothesized that the EX could induce similar acute reductions in peripheral and
central BP as a single ET.

2. Materials and Methods
2.1. Participants

Twenty-eight healthy, recreational active participants (46.4% female; aged 24.8 ± 3.9 years;
BMI 23.2 ± 2.3 kg/m2) volunteered to take part in this study.

Entry criteria included healthy adults (>18 years) of either sex. Participants were
excluded from the study if they (1) used antihypertensive or other cardiovascular medica-
tions or had previously been treated with cardiovascular drugs; (2) suffered from known
cardiovascular diseases, (3) or orthopedic injuries; and (4) had previous experience with
the ExerCube. All female participants had to have regular and healthy menstrual cycles, no
reported history of menstrual distress, and have utilized an oral contraceptive pill for the
previous six months or longer.

Participants were recruited via word of mouth, social media, and posters and flyers
displayed at the university campus between October 2019 and December 2019. The partici-
pants were informed about the content and structure of the study and gave written consent
before the start of the study.

The study was conducted in accordance with the Helsinki Declaration and approved
by the Research Ethics Board of the Martin-Luther-Universität Halle-Wittenberg (Medical
Faculty of the Martin-Luther-University Halle-Wittenberg 2019-177). The study was pre-
registered at ISRCTN registry (ISRCTN43067716, 38154).
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2.2. Study Design

This study is a randomized crossover trial. Participants reported to the laboratory of
the Institute of Sport Science at the Martin Luther University Halle-Wittenberg between
December 2019 and May 2020 on three occasions in a 4-hour postprandial state. They were
instructed to abstain from consuming caffeinated or alcoholic beverages and nicotine for
4 h. They were further asked to abstain from intensive physical exercise for at least 12 h.
All visits were held at least 48 h apart, with each visit occurring at approximately the same
time of day. For female participants, the examination days were selected to not fall into the
early follicular phase, where the post-exercise hypotension effect is supposed to be more
pronounced [15].

During the first visit, participants completed baseline surveys, anthropometry, BP
readings, and a graded exercise test (GXT). They were then familiarized with the ExerCube
and had the opportunity to participate in a 10-min tutorial.

On the second and third visits, participants completed an ET on a treadmill and
an EX in a randomized and balanced order. The principal investigator carried out the
randomization using a computerized random number generator. Before and during a
45-min resting phase after the respective exercise session, hemodynamic measurements
were obtained.

The same trained study staff member undertook all measurements in the same
temperature-controlled laboratory (23.5 ◦C ± 0.5 ◦C).

Due to the intervention design, both patients and study staff were not blinded. Only
the statistician was blinded to coding of group allocation. The CONSORT flow diagram
and checklist are available in the appendix.

2.3. Baseline Assessments

Standing height was measured barefoot to the nearest 0.5 cm using a wall-mounted
anthropometer. Body mass was assessed to the nearest 0.1 kg using an electronic scale (BC-
545 Innerscan, Tanita, Amsterdam, The Netherlands). Waist circumference was measured
midway between the lowest ribs and the iliac crest to the nearest 0.1 cm using a nonelastic
anthropometric tape.

Participants completed baseline questionnaires assessing habitual physical activity and
medical history. Furthermore, a blood pressure measurement was performed to familiarize
participants with the procedure.

2.4. Incremental Exercise Test

Participants completed a GXT on a treadmill (h/p/cosmos, Pulsar 4.0, Nussdorf—
Traunstein, Germany) till voluntary exertion. The initial speed was set according to the
individual training status ranging between 7.5 km/h and 10.5 kmh. Each step lasted 3 min
interspersed with a 1-min passive rest to draw lactate samples (10 µL) from the earlobe.
After each step, the speed was increased by 1.5 km/h until volitional exhaustion.

Heart rate (HR) was monitored throughout the test using a Polar heart rate monitor
(Polar Electro OY, Kempele, Finland), and HRpeak was the highest recorded value.

Blood lactate concentrations were assessed at the end of each stage using the enzymatic
amperometry method (Dr. Mueller, Super GL ambulance, Freital, Germany). Collected
data were processed utilizing WinLactat 3.1 software (Mesics, Münster, Germany), and
individual thresholds were derived from the lactate-velocity curve using the Dickhuth
model [16].

2.5. Hemodynamic Measurements

Before each exercise session, resting hemodynamic parameters, such as the peripheral
systolic and diastolic as well as the central systolic and diastolic BP, were measured using
the Mobil-O-Graph (24 PWA monitor, IEM, Stolberg, Germany) as a clinically validated
device for hemodynamic measurements [17] with a novel transfer function-like algorithm,
using brachial cuff-based waveform recordings. Measurements were obtained after a
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15-min resting phase in the supine position. A minimum of two readings was taken from
the right arm using custom-fit arm cuffs.

Hemodynamic measurements were repeated following both exercise sessions after
15 min, 30 min, and 45 min of rest in a supine position. All measurements were carried
out in a quiet environment by the same qualified person in a separate room at controlled
room temperature.

2.6. ExerCube

The ExerCube is a physically and cognitively challenging exergame where the players
are surrounded by three walls, which serve as projection screens and a haptic interface
for bodily interactions. A customized motion tracking system tracks players’ movement
via HTC Vive trackers (attached to their wrists and ankles). To ensure an attractive and
effective workout experience for a broad spectrum of players with different skill levels, the
ExerCube continuously adapts game difficulty to players’ fitness and cognitive skills [13].

In this study, the participants played the game Sphery Racer, a single-player game for
the ExerCube setting. In this game, the player navigates an avatar on a hoverboard along
a racing track and performs different movement tasks (e.g., squats, launches, punches,
burpees). The game implements five dynamic movement levels (level 1: 2.5 min; level
2: 2.5 min; level 3: 5 min; level 4: 5 min; level 5: 10 min), which gradually increase in
difficulty and complexity. The different levels are interspersed by short (≈30 s) rest periods.
Throughout the game, both in-game performance and HR are monitored. To guarantee an
optimal cognitive and physical stimulus, game difficulty and speed are adjusted accordingly.
Whenever participants accumulate too many mistakes or reach a predetermined HR, the
game’s speed decreases. A more extensive description can be found in Martin-Niedecken
et al. [12,13].

To determine fluid loss, body mass was assessed to the nearest 0.1 kg using an elec-
tronic scale (BC-545 Innerscan, Tanita, The Netherlands) before and after the exercise
session in the ExerCube. Throughout the exercise session, HR was continuously recorded
using a Polar HR monitor (Polar Electro OY, Kempele, Finland).

2.7. Moderate Endurance Exercise

The ET consisted of a 35-min moderate endurance exercise on a treadmill. After a
5-min warm-up (5.5 kmh), treadmill speed was set according to the individual aerobic
threshold and continuously adjusted so that each participant attained an HR of <65% of
HRpeak throughout the exercise session. HR was monitored by a Polar HR monitor (Polar
Electro OY, Kempele, Finland). Before and after the exercise, body mass was assessed to
the nearest 0.1 kg using an electronic scale (BC-545 Innerscan, Tanita, The Netherlands).

2.8. Statistical Analysis

An a priori power analysis utilizing G*power (Version 3.1.2; Heinrich Heine Univer-
sität, Dusseldorf, Germany) was conducted, indicating that a sample size of 24 subjects
would provide sufficient power to observe differences, assuming a large effect size. Analy-
sis of the anthropometric data of the participants was carried out using Microsoft Excel 2013.
Results are presented as mean and standard deviation. All other statistical analyses were
performed using the open-source program “R” (RStudio, Inc., Boston, MA, USA, Version
3.5.3). The Shapiro–Wilk test and the Kolmogorov–Smirnov test were performed to verify
the normal distribution of the data. Due to the non-symmetrically distributed samples, a
two-sided Wilcoxon test was used for connected samples. The variables are shown as the
median and first and third quartile. The level of significance was set at p < 0.05.

3. Results

All twenty-eight participants completed both sessions with no adverse events and were
analyzed for the primary outcome. Participants’ characteristics are presented in Table 1.
On average, the participants were engaged in 7.1 ± 3.4 h of physical exercise/sports
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per week. According to BMI, four participants were classified as overweight [18]. By
means of the waist-to-height ratio (WHtR), two of the included participants showed values
within the overweight range. According to the BP classification of the European Society of
Cardiology (ESC) [19], none of the participants enrolled could be classified as hypertensive
concerning SBP. Two of the participants presented a high normal SBP. According to the
DBP, all participants were classified as normotensive.

Table 1. Participants’ characteristics.

Outcome Mean ± SD

Age (y) 24.8 ± 3.9
Gender (f/m) 13/15

Body mass (kg) 68.9 ± 10.7
Height (cm) 171.9 ± 9.7

Body-Mass-Index (kg/m2) 23.2 ± 2.3
Waist-to-height-ratio 0.4 ± 0.1

HRmax (bpm) 194.1 ± 7.7
Abbreviations: SD = standard deviation; HRmax = maximal heart rate during graded exercise test; bpm = beats
per minute.

During the EX, the participants reached a maximal HR of 187.4 ± 9.2 bpm, which
corresponds to 96.6 ± 3.6% of their individual HRpeak. The mean HR throughout the game
(including the short rest periods between the levels) was 167.1 ± 10.9 bpm, corresponding
to 86.1 ± 4.3% of HRpeak. This is significantly (p < 0.001) higher than the mean and
maximum HR during the ET (138.0 ± 7.7; 152.1 ± 9.6 bpm).

After the ET (45 min), there was only a slight, however, statistically significant re-
duction in the DBP (Table 2). After the EX, both SBP and the DBP were still significantly
reduced 45 min after cessation of the training (Table 2).

Table 2. Peripheral and central SBP and DBP at rest before and 15, 30, and 45 min after exercise.

Exergaming Session p-Value * Moderate Endurance Exercise p-Value *

Peripheral SBP (mmHg)
At rest (reference) 119.8 (115.1, 129.8) 118.8 (111.3, 124.6)

15 min 122.5 (107.0, 129.5) p = 0.615 119.5 (107.0, 128.3) p = 0.969
30 min 116.5 (107.8, 121.5) p < 0.001 118.0 (110.5, 124.3) p = 0.544
45 min 113.5 (106.0, 119.0) p < 0.001 117.0 (111.8, 122.3) p = 0.137

Peripheral DBP (mmHg)
At rest (reference) 69.8 (66.0, 74.1) 67.8 (64.4, 74.3)

15 min 68.5 (62.5, 73.3) p = 0.158 70.0 (63.8, 74.3) p = 0.985
30 min 69.5 (61.0, 73.0) p = 0.028 68.0 (61.8, 71.0) p = 0.060
45 min 65.0 (59.8, 69.3) p < 0.001 67.0 (61.0, 72.0) p = 0.003

Central SBP (mmHg)
At rest (reference) 109.8 (103.5, 120.1) 107.3 (102.8, 113.5)

15 min 110.0 (100.0, 119.3) p = 0.701 111.0 (99.0, 119.0) p = 0.083
30 min 109.5 (99.3, 113.0) p = 0.001 112.5 (100.0, 118.0) p = 0.195
45 min 104.0 (97.8, 112.8) p < 0.001 109.5 (102.0, 114.3) p = 0.648

Central DBP (mmHg)
At rest (reference) 71.3 (67.1, 75.0) 69.0 (65.4, 75.0)

15 min 72.0 (63.0, 77.3) p = 0.175 70.0 (64.5, 74.3) p = 0.995
30 min 70.0 (62.8, 75.0) p = 0.024 69.0 (62.0, 72.3) p = 0.102
45 min 66.0 (60.5, 70,3) p < 0.001 67.5 (61.0, 70.3) p = 0.006

* Exact Wilcoxon test—comparison with resting value (reference). Abbreviations: SBP = systolic blood pressure;
DBP = diastolic blood pressure. The variables were shown as the median and 1st and 3rd quartile.

In peripheral SBP, the interaction effects between both groups showed significant
differences in favor of the EX 30 min (p < 0.001) as well as 45 min (p < 0.001) after exercise
(Figure 1).
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A significant difference in peripheral DBP between the two training procedures was
shown 45 min after the training (p = 0.05) in favor of the EX. No significant interaction
effects were found 15 min (p = 0.55) or 30 min (p = 0.93) after exercise (Figure 2).

Similar to the peripheral SBP, there was no change in central SBP after the ET (Table 2).
The DBP was only slightly but statistically significantly reduced 45 min after the end of the
training (Table 2). In contrast, after the EX, both the SBP and the DBP were still significantly
reduced in the 45th minute compared to the pre-exercise BP (p < 0.001) (Table 2).

The interaction effects showed a tendency towards an advantage for the EX in central
SBP 15 min after the exercise session (p = 0.07). Thirty minutes (p < 0.001) as well as 45 min
(p < 0.001) after exercise, significant differences in favor of EX could be detected (Figure 3).

In central DBP, the difference between the two groups showed a trend (p = 0.08) in
favor of the EX 45 min after exercise (Figure 4).
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4. Discussion

This is the first study to show that a single EX can result in greater peripheral and
central BP reductions in healthy adults than a single ET.

The effects of acute exercise on peripheral BP have been previously studied. Numer-
ous trials have determined PEH after different training protocols that last up to several
hours after training [20,21]. The reduction in peripheral BP after the EX is comparable
or even greater in magnitude than other studies have revealed after different exercise
protocols [3,22].

The only low reduction in peripheral BP after the ET is surprising and in contrast to
other studies [3,23]. A reason for the low PEH-effect after the ET may be the relatively
short exercise duration of only 35 min. However, Liu and colleagues [3] determined more
pronounced BP reductions after only 30 min of endurance exercise. Nevertheless, the
exercise intensity in this study was higher (65% of VO2max), and their participants were
prehypertensive sedentary individuals. Similarly, Pescatello et al. [24] determined stronger
PEH effects after 30 min of endurance exercise compared to our ET when measuring BP
five hours after exercise. However, they also included high normal to stage 1 hyperten-
sion participants. Only normotensive participants were included in the present study,
which could account for the minor response, as baseline BP is reported as a predictor of
post-exercise hypotension (PEH) [24]. In a more recent study, Pierce and colleagues [25]
concluded that endurance training seems inferior to other exercise modes concerning PEH,
which corresponds to our results.

Regarding central BP, the EX induced a similar reduction as seen in previous studies
assessing moderate endurance or high-intensity interval training [23,26]. The non-invasive
measurement of the central, aortic blood pressure is becoming increasingly important for
the pathogenesis of cardiovascular diseases and the better characterization of different
forms of arterial hypertension [27]. The central BP reflects the afterload of the heart
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and correlates with the myocardial oxygen consumption. Accordingly, the prognostic
significance of central BP is evaluated higher than that of peripheral BP [14].

In the present study, post-exercise central SBP and DBP were significantly lower after
the EX compared to the ET. The difference between peripheral and central SBP was the
same after both exercise sessions compared to the pre-exercise baseline. This means that
the relative physiological increase in vascular stiffness from central to peripheral was
unchanged by both exercise types. This contrasts with the study of Goeder et al. [28], who
found a greater decrease in central compared to peripheral BP after maximal exercise. Thus,
it seems that changes in central BP are intensity-dependent.

The significant PEH of the EX may be attributed to the high exercise intensity. It is
acknowledged that one of the causes of PEH is persistent shear stress-induced vasodilation
that is not matched by increases in cardiac output [5,29]. The higher exercise intensity
during the EX possibly led to a higher oxygen demand in the working muscle that consecu-
tively provoked a greater blood flow through the vessel and, therefore, promoted greater
shear-stress induced nitric oxide (NO) release [30].

Another possible explanation of the different BP reactions between the two exercise
modes could be an exercise intensity induced alteration in baroreceptor function with sub-
sequent sympathetic inhibition [24]. The influence of exercise intensity on the magnitude
of PEH is supported by the literature [24,31].

Furthermore, a higher fluid loss via sweat could be debated as a reason for the
difference in BP reaction. In the present study, the participants lost slightly more weight
(−0.39 ± 0.27 kg) during the EX than during the ET (−0.30 ± 0.41 kg), indicating a higher
fluid loss. However, the difference was marginal and not significant.

Another reason for the greater decrease in BP response after the EX may be the
functional holistic training that provokes multi-joint movements engaging larger muscle
groups. In a meta-analysis, Casonatto and colleagues [32] revealed, that resistance training
sessions involving large muscle groups prompted greater PEH than sessions involving only
small muscle groups. One of the physiological mechanisms that could explain the influence
of muscle mass on BP after exercise may be a higher release in vasoactive substances (nitric
oxide, prostaglandins) caused by a higher increase in blood flow [33].

To our knowledge, there is only one comparable study assessing the PEH effect of
exergaming on peripheral BP in adults. Alves da Cruz et al. [34] found non-significant
BP responses between an exergame session and a general cardiovascular rehabilitation
program consisting of whole-body exercises for the upper and lower limbs and endurance
exercise on a treadmill. In a study in children, Mills and colleagues [35] found that par-
ticularly high-intensity exergames, in contrast to exergames with lower intensity, exerted
beneficial effects on flow-mediated dilatation.

Different studies have assessed the effects of regular exergaming on BP. McBain
et al. [36] analyzed the effects of a self-designed high-intensity interval boxing exergame.
After six weeks of intervention (3/week), the scholars found no apparent beneficial effects
on BP compared to the control group, despite favorable changes in VO2max. De Carvalho
and colleagues [37] compared seven weeks of regular (3/week) exergaming (Wii, Nintendo,
Kyoto, Japan) with regular stretching exercise and observed an insignificant trend toward
reduced systolic pressure in the group participating in the regular exergaming sessions.
In a study conducted by Staiano et al. [38], a 24-week (3/week) home-based exergaming
intervention improved systolic and diastolic BP, total cholesterol, and LDL-cholesterol in
overweight and obese children. However, this trial used exergaming as one tool within a
broader behavior change intervention.

Current literature does not allow a clear conclusion regarding the effectiveness of
exergames on hemodynamic parameters. However, based on the present results, it seems
that exergames, such as the ExerCube, which apply a sound training concept inducing high
exercise intensities, have the potential to result in relevant physiological adaptions.

The effectiveness of the ExerCube may be attributed to the high exercise intensity
and the functional holistic training that provokes multi-joint movements engaging larger
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muscle groups. Since the ExerCube tracks the HR throughout the game and adapts the
game challenge and speed according to a predefined target HR, it can guarantee an adequate
stimulus throughout the training session. Furthermore, the game requires the player to
perform whole-body movements, which are precisely tracked by the motion-capturing
system. Thus cheating, as often reported for hand-held motion sensors [39], is not possible.

Our findings suggest that the EX provided a more potent physiological stimulus
compared to the selected ET. This is of relevance as the magnitude of BP reduction after
acute exercise highly correlates with the magnitude of BP reduction after chronic training
interventions [3]. Therefore, it can be assumed that regular exergaming may result in
long-term BP reductions.

Thus, heart rate controlled exergames, such as the ExerCube, can present a promising
training tool in cardiovascular rehabilitation and prevention. Since a lack of time and
motivation is often stated as one of the barriers to regular exercise participation, exergames
can potentially serve as an enjoyable and effective alternative to traditional ET. Previous
studies have shown that the immersive and playful design of the ExerCube leads to higher
exercise enjoyment than regular exercise programs [12,13,40]. This may enhance long-term
training adherence.

Nevertheless, the superior effects of the EX may only apply to the young and healthy
adults enrolled in the present study. Even though PEH has been reported in both young
and older adults as well as in hypertensive and normotensive persons [22], the relevance
of exercise intensity on PEH in different populations is not clear. A recent systematic
review [41] revealed similar changes in BP after moderate endurance training and high-
intensity interval training in older adults.

The game setup of the ExerCube could serve as a model of good practice for videogame
designers. This could facilitate the development of exergames that not only target an
appealing gaming experience but also integrate an effective training program. This can
help expand the intervention approaches in cardiovascular prevention and rehabilitation.

Limitations

There are several limitations that must be addressed. First, a relatively small sample
size of healthy young participants was recruited, thus the results cannot be extrapolated to
other populations. Further studies, including a larger sample size and different populations,
should be carried out. However, it is expected that the BP reductions would be greater
in individuals with hypertension compared to our mainly normotensive participants [42].
Since the exercise intensity in the ExerCube is individually tailored, it can be assumed that
it allows an adequate exercise stimulus for different target groups.

Additionally, one could argue that a ramp-wise incremental GXT is superior for
determining HRpeak. However, we chose the typical stepwise test to guarantee a steady-
state for the lactate assessment.

Furthermore, the results are limited to the specific ExerCube protocol applied in the
present study. Other exergames, especially ones inducing lower exercise intensities, will
probably lead to different effects.

A further limitation is the difference in the exercise intensity between the ET and the
EX. As the exercise intensity reached during the training in the ExerCube was not clear
beforehand, a general endurance exercise protocol that was proven to modulate PEH was
chosen. Future studies should compare exercise protocols of similar intensities and designs.

Finally, we only investigated the effects of an acute bout of EX. Further investigations
assessing the long-term effects of EX are warranted and may reveal whether the acute
effects could be accumulated.

5. Conclusions

It can be concluded that despite a lower time commitment, the EX is superior to an
ET with regard to PEH. Since acute BP responses highly correlate with long-term changes
in hemodynamic parameters, the ExerCube may present a time-efficient and motivating
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exercise approach for the prevention and rehabilitation of cardiovascular diseases. How-
ever, further studies assessing the effects of regular training in the ExerCube in different
populations are highly warranted.
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