98 research outputs found

    The role of the pharmacist in the management of type 2 diabetes: current insights and future directions

    Get PDF
    Type 2 diabetes is a chronic disease occurring in ever increasing numbers worldwide. It contributes significantly to the cost of health globally; however, its management remains in the most part less than optimal. Patients must be empowered to self-manage their disease, and they do this in partnership with health care professionals. Whilst the traditional role of the pharmacist has been centered around the supply of medicines and patient counseling, there is an evergrowing body of evidence that pharmacists, through a range of extended services, may contribute positively to the clinical and humanistic outcomes of those with diabetes. Further, these services can be delivered cost-effectively. This paper provides a review of the current evidence supporting the role of pharmacists in diabetes care, whilst providing a commentary of the future roles of pharmacists in this area

    Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV-2 Targets

    Get PDF
    We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 ÎŒs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 ÎŒs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study

    RT-PCR assay for the detection of infective (L3) larvae of lymphatic filarial parasite, Wuchereria bancrofti, in vector mosquito Culex quinquefasciatus

    Get PDF
    Background & objectives: Periodic monitoring of vector population for infection and infectivity rates is central to the evaluation of the filariasis elimination strategies in endemic areas to monitor the success of MDA and also to establish endpoints for intervention. The main objective of this study was to develop a RT-PCR assay, based on L3 stage-specific primers to detect the presence of infective stage larvae of filarial parasite, Wuchereria bancrofti in the vector Culex quinquefasciatus. Material & Methods: Subtracted probe development technique was employed for the identification of infective stage (L3) specific genes. The subtracted cDNA was labeled by non-radioisotopic method and used for screening cDNA library of L3 stage larvae of W. bancrofti constructed in UniZap XR. Recombinants were probed and identified from the library. The inserts of the recombinant clones were purified and sequenced. Primers were designed based on the sequence information of three recombinant clones for detecting L3 larvae of W. bancrofti in the vector by RT-PCR assay. Preliminary laboratory evaluation was carried out to assess the sensitivity and specificity of WbL31 RT-PCR assay.Results: cDNA library of L3 stage of W. bancrofti constructed in UniZap XR vector, constituted 5×105 phages with 80–90% recombinant phages and the size of inserts varied from 0.1 to 1.0 kb. When subtracted cDNA was random prime labeled and used for screening cDNA library of L3 stage of W. bancrofti constructed in UniZap XR, 18 clones were identified from the library. Three genes were found up-regulated in the L3 stage, out of which WbL31 (cuticular collagen) was found to be useful in detecting L3 larvae of W. bancrofti in the vector by RT-PCR assay with high specificity and sensitivity (98–100% ). Conclusion: Present paper marks first report on the development of an infective stage-specific RT-PCR assay (WbL31 RT-PCR assay) to detect L3 stage W. bancrofti in the vector. This assay will have potential application in assessing the transmission of infection and hence in decision-making related to elimination programme

    Is the pharmacy profession innovative enough?: meeting the needs of Australian residents with chronic conditions and their carers using the nominal group technique

    Get PDF
    Background Community pharmacies are ideally located as a source of support for people with chronic conditions. Yet, we have limited insight into what innovative pharmacy services would support this consumer group to manage their condition/s. The aim of this study was to identify what innovations people with chronic conditions and their carers want from their ideal community pharmacy, and compare with what pharmacists and pharmacy support staff think consumers want. Methods We elicited ideas using the nominal group technique. Participants included people with chronic conditions, unpaid carers, pharmacists and pharmacy support staff, in four regions of Australia. Themes were identified via thematic analysis using the constant comparison method. Results Fifteen consumer/carer, four pharmacist and two pharmacy support staff groups were conducted. Two overarching themes were identified: extended scope of practice for the pharmacist and new or improved pharmacy services. The most innovative role for Australian pharmacists was medication continuance, within a limited time-frame. Consumers and carers wanted improved access to pharmacists, but this did not necessarily align with a faster or automated dispensing service. Other ideas included streamlined access to prescriptions via medication reminders, electronic prescriptions and a chronic illness card. Conclusions This study provides further support for extending the pharmacist’s role in medication continuance, particularly as it represents the consumer’s voice. How this is done, or the methods used, needs to optimise patient safety. A range of innovative strategies were proposed and Australian community pharmacies should advocate for and implement innovative approaches to improve access and ensure continuity of care

    ‘It doesn’t happen how you think, it is very complex!’ Reconciling stakeholder priorities, evidence, and processes for zoonoses prioritisation in India

    Get PDF
    BackgroundWhy do some zoonotic diseases receive priority from health policy decision-makers and planners whereas others receive little attention? By leveraging Shiffman and Smith’s political prioritisation framework, our paper advances a political economy of disease prioritisation focusing on four key components: the strength of the actors involved in the prioritisation, the power of the ideas they use to portray the issue, the political contexts in which they operate, and the characteristics of the issue itself (e.g., overall burdens, severity, cost-effective interventions). These components afford a nuanced characterisation of how zoonotic diseases are prioritised for intervention and highlight the associated knowledge gaps affecting prioritisation outcomes. We apply this framework to the case of zoonoses management in India, specifically to identify the factors that shape disease prioritisation decision-making and outcomes.MethodsWe conducted 26 semi-structured interviews with national, state and district level health policymakers, disease managers and technical experts involved in disease surveillance and control in India.ResultsOur results show pluralistic interpretation of risks, exemplified by a disconnect between state and district level actors on priority diseases. The main factors identified as shaping prioritisation outcomes were related to the nature of the zoonoses problem (the complexity of the zoonotic disease, insufficient awareness and lack of evidence on disease burdens and impacts) as well as political, social, cultural and institutional environments (isolated departmental priorities, limited institutional authority, opaque funding mechanisms), and challenges in organisation leadership for cross-sectoral engagement.ConclusionThe findings highlight a compartmentalised regulatory system for zoonoses where political, social, cultural, and media factors can influence disease management and prioritisation. A major policy window is the institutionalisation of One Health to increase the political priority for strengthening cross-sectoral engagement to address several challenges, including the creation of effective institutions to reconcile stakeholder priorities and prioritisation processes

    Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes

    Get PDF
    Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings

    What is the state of the art on traditional medicine interventions for zoonotic diseases in the Indian subcontinent? A scoping review of the peer-reviewed evidence base

    Get PDF
    ‱Background: Traditional medicine (TM) interventions are plausible therapeutic alternatives to conventional medical interventions against emerging and endemic zoonotic diseases, particularly in low-and middle-income countries that may lack resources and infrastructure. Despite the growing popularity in the usage of TM interventions, their clinical safety and effectiveness are still contested within conventional healthcare in many countries. ‱Methods: We conducted a scoping review of the peer-reviewed literature that synthesises and maps the evidence on TM interventions for the treatment and prevention of zoonoses on the Indian subcontinent. The region, a global hotspot of biodiversity and emerging infections, is characterised by high prevalence of TM use. Based on the scientific literature (mostly case study research, n=l06 studies), our review (1) maps the scope of the literature, (2) synthesises the evidence on the application of TM interventions for zoonoses, and (3) critically reflects on the state of TM and identifies areas for future research focus. ‱Results: The evidence synthesis confirmed widespread usage of TM interventions for zoonoses on the subcontinent, with the majority of research reported from India (n=99 studies, 93.4%), followed by Pakistan (n=3 studies, 2.8%), Bangladesh (n=2 studies, 1.9%), and Sri Lanka (n=1, 0.9%). Most of the reviewed studies reported on ethno-medicinal uses of plant species, primarily for treating dengue (n=20 studies), tuberculosis (n=18 studies), Escherichia coli infection (n=16 studies), lymphatic filariasis and cholera (n=9 apiece). However, the evidence on the safety and effectiveness of these reported TM interventions is limited, indicating that these data are rarely collected and/or shared within the peer-reviewed literature. ‱Conclusion: This review thus highlights that, whilst TMs are already being used and could offer more widely accessible interventions against emerging and endemic zoonoses and ectoparasites, there is an urgent need for rigorous clinical testing and validation of the safety and effectiveness of these interventions

    Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na<sup>+ </sup>channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common <it>kdr </it>mutation in insects, was reported in <it>Anopheles culicifacies</it>-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an <it>An. culicifacies </it>population from Malkangiri district of Orissa, India.</p> <p>Methods</p> <p><it>Anopheles culicifacies sensu lato (s.l.) </it>samples, collected from a population of Malkangiri district of Orissa (India), were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR) was developed for the detection of the new mutation L1014S. The <it>An. culicifacies </it>population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS) and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing.</p> <p>Results</p> <p>DNA sequencing of <it>An. culicifacies </it>individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA)-to-Phe (TTT) or -Ser (TCA) changes, respectively. A third and novel substitution, Val (GTG)-to-Leu (TTG or CTG), was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the identification of the new mutation L1014S was found specific as evident from DNA sequencing results of respective samples. Since L1014S was found tightly linked to V1010L, no separate assay was developed for the latter mutation. Screening of population using PIRA-PCR assays for 1014S and ARMS for 1014F alleles revealed the presence of all the three amino acid substitutions in low frequency.</p> <p>Conclusions</p> <p>This is the first report of the presence of L1014S (homologous to the <it>kdr-e </it>in <it>An. gambiae</it>) and a novel mutation V1010L (resulting from G-to-T or -C transversions) in the VGSC of <it>An. culicifacies </it>in addition to the previously described mutation L1014F. The V1010L substitution was tightly linked to L1014S substitution. A new PIRA-PCR strategy was developed for the detection of L1014S mutation and the linked V1010L mutation.</p
    • 

    corecore